These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
207 related items for PubMed ID: 22383400
1. Modulation of mesenchymal stem cell actin organization on conventional microcarriers for proliferation and differentiation in stirred bioreactors. Sart S, Errachid A, Schneider YJ, Agathos SN. J Tissue Eng Regen Med; 2013 Jul; 7(7):537-51. PubMed ID: 22383400 [Abstract] [Full Text] [Related]
2. Large-Scale Expansion and Differentiation of Mesenchymal Stem Cells in Microcarrier-Based Stirred Bioreactors. Sart S, Agathos SN. Methods Mol Biol; 2016 Jul; 1502():87-102. PubMed ID: 26892015 [Abstract] [Full Text] [Related]
3. Engineering stem cell fate with biochemical and biomechanical properties of microcarriers. Sart S, Agathos SN, Li Y. Biotechnol Prog; 2013 Jul; 29(6):1354-66. PubMed ID: 24124017 [Abstract] [Full Text] [Related]
4. Improved expansion of human bone marrow-derived mesenchymal stem cells in microcarrier-based suspension culture. Yuan Y, Kallos MS, Hunter C, Sen A. J Tissue Eng Regen Med; 2014 Mar; 8(3):210-25. PubMed ID: 22689330 [Abstract] [Full Text] [Related]
5. Stirred tank bioreactor culture combined with serum-/xenogeneic-free culture medium enables an efficient expansion of umbilical cord-derived mesenchymal stem/stromal cells. Mizukami A, Fernandes-Platzgummer A, Carmelo JG, Swiech K, Covas DT, Cabral JM, da Silva CL. Biotechnol J; 2016 Aug; 11(8):1048-59. PubMed ID: 27168373 [Abstract] [Full Text] [Related]
6. Biodegradable poly-ε-caprolactone microcarriers for efficient production of human mesenchymal stromal cells and secreted cytokines in batch and fed-batch bioreactors. Lam AT, Li J, Toh JP, Sim EJ, Chen AK, Chan JK, Choolani M, Reuveny S, Birch WR, Oh SK. Cytotherapy; 2017 Mar; 19(3):419-432. PubMed ID: 28017598 [Abstract] [Full Text] [Related]
7. Scalable ex vivo expansion of human mesenchymal stem/stromal cells in microcarrier-based stirred culture systems. Carmelo JG, Fernandes-Platzgummer A, Cabral JM, da Silva CL. Methods Mol Biol; 2015 Mar; 1283():147-59. PubMed ID: 25063496 [Abstract] [Full Text] [Related]
9. A microcarrier-based cultivation system for expansion of primary mesenchymal stem cells. Frauenschuh S, Reichmann E, Ibold Y, Goetz PM, Sittinger M, Ringe J. Biotechnol Prog; 2007 Mar; 23(1):187-93. PubMed ID: 17269687 [Abstract] [Full Text] [Related]
10. A xeno-free microcarrier-based stirred culture system for the scalable expansion of human mesenchymal stem/stromal cells isolated from bone marrow and adipose tissue. Carmelo JG, Fernandes-Platzgummer A, Diogo MM, da Silva CL, Cabral JM. Biotechnol J; 2015 Aug; 10(8):1235-47. PubMed ID: 26136376 [Abstract] [Full Text] [Related]
11. Maximizing the ex vivo expansion of human mesenchymal stem cells using a microcarrier-based stirred culture system. Eibes G, dos Santos F, Andrade PZ, Boura JS, Abecasis MM, da Silva CL, Cabral JM. J Biotechnol; 2010 Apr 15; 146(4):194-7. PubMed ID: 20188771 [Abstract] [Full Text] [Related]
12. Scalable manufacture of therapeutic mesenchymal stromal cell products on customizable microcarriers in vertical wheel bioreactors that improve direct visualization, product harvest, and cost. Haskell A, White BP, Rogers RE, Goebel E, Lopez MG, Syvyk AE, de Oliveira DA, Barreda HA, Benton J, Benavides OR, Dalal S, Bae E, Zhang Y, Maitland K, Nikolov Z, Liu F, Lee RH, Kaunas R, Gregory CA. Cytotherapy; 2024 Apr 15; 26(4):372-382. PubMed ID: 38363250 [Abstract] [Full Text] [Related]
14. A xenogeneic-free bioreactor system for the clinical-scale expansion of human mesenchymal stem/stromal cells. Dos Santos F, Campbell A, Fernandes-Platzgummer A, Andrade PZ, Gimble JM, Wen Y, Boucher S, Vemuri MC, da Silva CL, Cabral JM. Biotechnol Bioeng; 2014 Jun 15; 111(6):1116-27. PubMed ID: 24420557 [Abstract] [Full Text] [Related]
16. Increasing efficiency of human mesenchymal stromal cell culture by optimization of microcarrier concentration and design of medium feed. Chen AK, Chew YK, Tan HY, Reuveny S, Weng Oh SK. Cytotherapy; 2015 Feb 15; 17(2):163-73. PubMed ID: 25304664 [Abstract] [Full Text] [Related]
17. Modulation of mesenchymal stromal cell characteristics by microcarrier culture in bioreactors. Hupfeld J, Gorr IH, Schwald C, Beaucamp N, Wiechmann K, Kuentzer K, Huss R, Rieger B, Neubauer M, Wegmeyer H. Biotechnol Bioeng; 2014 Nov 15; 111(11):2290-302. PubMed ID: 24890974 [Abstract] [Full Text] [Related]
18. Feasibility of human hair follicle-derived mesenchymal stem cells/CultiSpher(®)-G constructs in regenerative medicine. Li P, Liu F, Wu C, Jiang W, Zhao G, Liu L, Bai T, Wang L, Jiang Y, Guo L, Qi X, Kou J, Fan R, Hao D, Lan S, Li Y, Liu JY. Cell Tissue Res; 2015 Oct 15; 362(1):69-86. PubMed ID: 25948482 [Abstract] [Full Text] [Related]
19. Mouse embryonic stem cell expansion in a microcarrier-based stirred culture system. Fernandes AM, Fernandes TG, Diogo MM, da Silva CL, Henrique D, Cabral JM. J Biotechnol; 2007 Oct 31; 132(2):227-36. PubMed ID: 17644203 [Abstract] [Full Text] [Related]
20. Production of oncolytic adenovirus and human mesenchymal stem cells in a single-use, Vertical-Wheel bioreactor system: Impact of bioreactor design on performance of microcarrier-based cell culture processes. Sousa MF, Silva MM, Giroux D, Hashimura Y, Wesselschmidt R, Lee B, Roldão A, Carrondo MJ, Alves PM, Serra M. Biotechnol Prog; 2015 Oct 31; 31(6):1600-12. PubMed ID: 26289142 [Abstract] [Full Text] [Related] Page: [Next] [New Search]