These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


218 related items for PubMed ID: 22387180

  • 1. ATP-dependent potassium channel blockade strengthens microglial neuroprotection after hypoxia-ischemia in rats.
    Ortega FJ, Gimeno-Bayon J, Espinosa-Parrilla JF, Carrasco JL, Batlle M, Pugliese M, Mahy N, Rodríguez MJ.
    Exp Neurol; 2012 May; 235(1):282-96. PubMed ID: 22387180
    [Abstract] [Full Text] [Related]

  • 2. Iptakalim protects against hypoxic brain injury through multiple pathways associated with ATP-sensitive potassium channels.
    Zhu HL, Luo WQ, Wang H.
    Neuroscience; 2008 Dec 10; 157(4):884-94. PubMed ID: 18951957
    [Abstract] [Full Text] [Related]

  • 3. Activation of ATP-sensitive potassium channels as an element of the neuroprotective effects of the Traditional Chinese Medicine MLC901 against oxygen glucose deprivation.
    Moha Ou Maati H, Borsotto M, Chatelain F, Widmann C, Lazdunski M, Heurteaux C.
    Neuropharmacology; 2012 Sep 10; 63(4):692-700. PubMed ID: 22659084
    [Abstract] [Full Text] [Related]

  • 4. Effects of the treatment with glibenclamide, an ATP-sensitive potassium channel blocker, on intestinal ischemia and reperfusion injury.
    Pompermayer K, Amaral FA, Fagundes CT, Vieira AT, Cunha FQ, Teixeira MM, Souza DG.
    Eur J Pharmacol; 2007 Feb 05; 556(1-3):215-22. PubMed ID: 17182029
    [Abstract] [Full Text] [Related]

  • 5. Blockade of microglial KATP -channel abrogates suppression of inflammatory-mediated inhibition of neural precursor cells.
    Ortega FJ, Vukovic J, Rodríguez MJ, Bartlett PF.
    Glia; 2014 Feb 05; 62(2):247-58. PubMed ID: 24311472
    [Abstract] [Full Text] [Related]

  • 6. Anti-inflammatory mechanism of compound K in activated microglia and its neuroprotective effect on experimental stroke in mice.
    Park JS, Shin JA, Jung JS, Hyun JW, Van Le TK, Kim DH, Park EM, Kim HS.
    J Pharmacol Exp Ther; 2012 Apr 05; 341(1):59-67. PubMed ID: 22207656
    [Abstract] [Full Text] [Related]

  • 7. The role of ATP-sensitive potassium channel blockers in ischemia-reperfusion-induced renal injury versus their effects on cardiac ischemia reperfusion in rats.
    Tawfik MK, Abo-Elmatty DM, Ahmed AA.
    Eur Rev Med Pharmacol Sci; 2009 Apr 05; 13(2):81-93. PubMed ID: 19499842
    [Abstract] [Full Text] [Related]

  • 8. KATP channel blockade protects midbrain dopamine neurons by repressing a glia-to-neuron signaling cascade that ultimately disrupts mitochondrial calcium homeostasis.
    Toulorge D, Guerreiro S, Hirsch EC, Michel PP.
    J Neurochem; 2010 Jul 05; 114(2):553-64. PubMed ID: 20456014
    [Abstract] [Full Text] [Related]

  • 9. Presence and vascular pharmacology of KATP channel subtypes in rat central and peripheral tissues.
    Ploug KB, Baun M, Hay-Schmidt A, Olesen J, Jansen-Olesen I.
    Eur J Pharmacol; 2010 Jul 10; 637(1-3):109-17. PubMed ID: 20361954
    [Abstract] [Full Text] [Related]

  • 10. The blockade of K(+)-ATP channels has neuroprotective effects in an in vitro model of brain ischemia.
    Nisticò R, Piccirilli S, Sebastianelli L, Nisticò G, Bernardi G, Mercuri NB.
    Int Rev Neurobiol; 2007 Jul 10; 82():383-95. PubMed ID: 17678973
    [Abstract] [Full Text] [Related]

  • 11. Hypoxia-activated microglial mediators of neuronal survival are differentially regulated by tetracyclines.
    Lai AY, Todd KG.
    Glia; 2006 Jun 10; 53(8):809-16. PubMed ID: 16541436
    [Abstract] [Full Text] [Related]

  • 12. Pial microvascular responses to transient bilateral common carotid artery occlusion: effects of hypertonic glycerol.
    Lapi D, Marchiafava PL, Colantuoni A.
    J Vasc Res; 2008 Jun 10; 45(2):89-102. PubMed ID: 17934320
    [Abstract] [Full Text] [Related]

  • 13. Patents related to therapeutic activation of K(ATP) and K(2P) potassium channels for neuroprotection: ischemic/hypoxic/anoxic injury and general anesthetics.
    Judge SI, Smith PJ.
    Expert Opin Ther Pat; 2009 Apr 10; 19(4):433-60. PubMed ID: 19441925
    [Abstract] [Full Text] [Related]

  • 14. Minocycline alleviates hypoxic-ischemic injury to developing oligodendrocytes in the neonatal rat brain.
    Cai Z, Lin S, Fan LW, Pang Y, Rhodes PG.
    Neuroscience; 2006 Apr 10; 137(2):425-35. PubMed ID: 16289838
    [Abstract] [Full Text] [Related]

  • 15. Iptakalim protects against ischemic injury by improving neurovascular unit function in the mouse brain.
    Ji J, Yan H, Chen ZZ, Zhao Z, Yang DD, Sun XL, Shi YP.
    Clin Exp Pharmacol Physiol; 2015 Jul 10; 42(7):766-71. PubMed ID: 25998857
    [Abstract] [Full Text] [Related]

  • 16. Brain damage related to hemorrhagic transformation following cerebral ischemia and the role of K ATP channels.
    Yang Y, Zhang XJ, Yin J, Li LT.
    Brain Res; 2008 Nov 19; 1241():168-75. PubMed ID: 18817754
    [Abstract] [Full Text] [Related]

  • 17. Neuronal K(ATP) channels mediate hypoxic preconditioning and reduce subsequent neonatal hypoxic-ischemic brain injury.
    Sun HS, Xu B, Chen W, Xiao A, Turlova E, Alibraham A, Barszczyk A, Bae CY, Quan Y, Liu B, Pei L, Sun CL, Deurloo M, Feng ZP.
    Exp Neurol; 2015 Jan 19; 263():161-71. PubMed ID: 25448006
    [Abstract] [Full Text] [Related]

  • 18. Intracarotid injection of granulocyte-macrophage colony-stimulating factor induces neuroprotection in a rat transient middle cerebral artery occlusion model.
    Nakagawa T, Suga S, Kawase T, Toda M.
    Brain Res; 2006 May 17; 1089(1):179-85. PubMed ID: 16678804
    [Abstract] [Full Text] [Related]

  • 19. KR-31762, a novel KATP channel opener, exerts cardioprotective effects by opening SarcKATP channels in rat models of ischemia/reperfusion-induced heart injury.
    Lee SH, Yang MK, Lim JH, Seo HW, Yi KY, Yoo SE, Lee BH, Won HS, Lee CS, Choi WS, Shin HS.
    Arch Pharm Res; 2008 Apr 17; 31(4):482-9. PubMed ID: 18449506
    [Abstract] [Full Text] [Related]

  • 20. A novel mechanism of FK506-mediated neuroprotection: downregulation of cytokine expression in glial cells.
    Zawadzka M, Kaminska B.
    Glia; 2005 Jan 01; 49(1):36-51. PubMed ID: 15390105
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.