These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


317 related items for PubMed ID: 22395455

  • 1. Plastid genetic engineering in Solanaceae.
    Venkatesh J, Park SW.
    Protoplasma; 2012 Oct; 249(4):981-99. PubMed ID: 22395455
    [Abstract] [Full Text] [Related]

  • 2. Genetic transformation of plastids of different Solanaceae species using tobacco cells as organelle hosts.
    Kuchuk N, Sytnyk K, Vasylenko M, Shakhovsky A, Komarnytsky I, Kushnir S, Gleba Y.
    Theor Appl Genet; 2006 Aug; 113(3):519-27. PubMed ID: 16758189
    [Abstract] [Full Text] [Related]

  • 3. Challenges and perspectives in commercializing plastid transformation technology.
    Ahmad N, Michoux F, Lössl AG, Nixon PJ.
    J Exp Bot; 2016 Nov; 67(21):5945-5960. PubMed ID: 27697788
    [Abstract] [Full Text] [Related]

  • 4. Advances of selectable marker genes in plastid genetic engineering.
    He Y, Luo A, Mu LS, Chen Q, Zhang Y, Yeh KW, Tian ZH.
    Yi Chuan; 2017 Sep 20; 39(9):810-827. PubMed ID: 28936979
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Stable transformation of petunia plastids.
    Zubkot MK, Zubkot EI, van Zuilen K, Meyer P, Day A.
    Transgenic Res; 2004 Dec 20; 13(6):523-30. PubMed ID: 15672833
    [Abstract] [Full Text] [Related]

  • 7. Stable transformation of the cotton plastid genome and maternal inheritance of transgenes.
    Kumar S, Dhingra A, Daniell H.
    Plant Mol Biol; 2004 Sep 20; 56(2):203-16. PubMed ID: 15604738
    [Abstract] [Full Text] [Related]

  • 8. Engineering the plastid genome of higher plants.
    Maliga P.
    Curr Opin Plant Biol; 2002 Apr 20; 5(2):164-72. PubMed ID: 11856614
    [Abstract] [Full Text] [Related]

  • 9. Identification of cis-elements conferring high levels of gene expression in non-green plastids.
    Zhang J, Ruf S, Hasse C, Childs L, Scharff LB, Bock R.
    Plant J; 2012 Oct 20; 72(1):115-28. PubMed ID: 22639905
    [Abstract] [Full Text] [Related]

  • 10. Progress on regulatory elements of plant plastid genetic engineering.
    Yu YF, OuYang Z, Guo J, Zhao YJ, Huang LQ.
    Yi Chuan; 2023 Jun 20; 45(6):501-513. PubMed ID: 37340964
    [Abstract] [Full Text] [Related]

  • 11. Plastome engineering in vegetable crops: current status and future prospects.
    Yarra R.
    Mol Biol Rep; 2020 Oct 20; 47(10):8061-8074. PubMed ID: 32880066
    [Abstract] [Full Text] [Related]

  • 12. New vectors and marker excision systems mark progress in engineering the plastid genome of higher plants.
    Maliga P.
    Photochem Photobiol Sci; 2005 Dec 20; 4(12):971-6. PubMed ID: 16307109
    [Abstract] [Full Text] [Related]

  • 13. [Analysis of nuclear and mitochondrial genomes of transplastomic Salpiglossis sinuata plants obtained by transfer of transformed plastids from N. tabacum (+S. sinuata) cybrid].
    Sytnik ES, Pariĭ AF, Komarnitskiĭ IK, Gleba IuIu, Kuchuk NV.
    Tsitol Genet; 2003 Dec 20; 37(5):3-8. PubMed ID: 14650322
    [Abstract] [Full Text] [Related]

  • 14. Nuclear and plastid genetic engineering of plants: comparison of opportunities and challenges.
    Meyers B, Zaltsman A, Lacroix B, Kozlovsky SV, Krichevsky A.
    Biotechnol Adv; 2010 Dec 20; 28(6):747-56. PubMed ID: 20685387
    [Abstract] [Full Text] [Related]

  • 15. Phage phiC31 integrase: a new tool in plastid genome engineering.
    Khan MS, Khalid AM, Malik KA.
    Trends Plant Sci; 2005 Jan 20; 10(1):1-3. PubMed ID: 15642516
    [Abstract] [Full Text] [Related]

  • 16. Metabolic engineering by plastid transformation as a strategy to modulate isoprenoid yield in plants.
    Hasunuma T, Kondo A, Miyake C.
    Methods Mol Biol; 2010 Jan 20; 643():213-27. PubMed ID: 20552454
    [Abstract] [Full Text] [Related]

  • 17. Transplastomics in Arabidopsis: progress toward developing an efficient method.
    Lutz KA, Azhagiri A, Maliga P.
    Methods Mol Biol; 2011 Jan 20; 774():133-47. PubMed ID: 21822837
    [Abstract] [Full Text] [Related]

  • 18. Plastid Transformation: How Does it Work? Can it Be Applied to Crops? What Can it Offer?
    Yu Y, Yu PC, Chang WJ, Yu K, Lin CS.
    Int J Mol Sci; 2020 Jul 09; 21(14):. PubMed ID: 32659946
    [Abstract] [Full Text] [Related]

  • 19. Unsolved problems in plastid transformation.
    Rigano MM, Scotti N, Cardi T.
    Bioengineered; 2012 Jul 09; 3(6):329-33. PubMed ID: 22892591
    [Abstract] [Full Text] [Related]

  • 20. Plastid transformation in the monocotyledonous cereal crop, rice (Oryza sativa) and transmission of transgenes to their progeny.
    Lee SM, Kang K, Chung H, Yoo SH, Xu XM, Lee SB, Cheong JJ, Daniell H, Kim M.
    Mol Cells; 2006 Jun 30; 21(3):401-10. PubMed ID: 16819304
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 16.