These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


355 related items for PubMed ID: 22397625

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. Improved catalytic performance of lipase accommodated in the mesoporous silicas with polymer-modified microenvironment.
    Liu J, Bai S, Jin Q, Zhong H, Li C, Yang Q.
    Langmuir; 2012 Jun 26; 28(25):9788-96. PubMed ID: 22642540
    [Abstract] [Full Text] [Related]

  • 3. Enhanced catalytic stability of lipase immobilized on oxidized and disulfide-rich eggshell membrane for esters hydrolysis and transesterification.
    Jiang C, Cheng C, Hao M, Wang H, Wang Z, Shen C, Cheong LZ.
    Int J Biol Macromol; 2017 Dec 26; 105(Pt 1):1328-1336. PubMed ID: 28768186
    [Abstract] [Full Text] [Related]

  • 4. Hydrophobic surface induced activation of Pseudomonas cepacia lipase immobilized into mesoporous silica.
    Jin Q, Jia G, Zhang Y, Yang Q, Li C.
    Langmuir; 2011 Oct 04; 27(19):12016-24. PubMed ID: 21851086
    [Abstract] [Full Text] [Related]

  • 5. Protic ionic liquid as additive on lipase immobilization using silica sol-gel.
    de Souza RL, de Faria EL, Figueiredo RT, Freitas Ldos S, Iglesias M, Mattedi S, Zanin GM, dos Santos OA, Coutinho JA, Lima ÁS, Soares CM.
    Enzyme Microb Technol; 2013 Mar 05; 52(3):141-50. PubMed ID: 23410924
    [Abstract] [Full Text] [Related]

  • 6. Immobilization of Pseudomonas stutzeri lipase for the transesterification of wood sterols with fatty acid esters.
    Fauré N, Illanes A.
    Appl Biochem Biotechnol; 2011 Nov 05; 165(5-6):1332-41. PubMed ID: 21887523
    [Abstract] [Full Text] [Related]

  • 7. Effect of sub- and supercritical CO2 treatment on the properties of Pseudomonas cepacia lipase.
    Chen D, Zhang H, Xu J, Yan Y.
    Enzyme Microb Technol; 2013 Jul 10; 53(2):110-7. PubMed ID: 23769311
    [Abstract] [Full Text] [Related]

  • 8. Enhanced productivity of electrospun polyvinyl alcohol nanofibrous mats using aqueous N,N-dimethylformamide solution and their application to lipase-immobilizing membrane-shaped catalysts.
    Sawada K, Sakai S, Taya M.
    J Biosci Bioeng; 2012 Aug 10; 114(2):204-8. PubMed ID: 22595342
    [Abstract] [Full Text] [Related]

  • 9. Lipase entrapment in protamine-induced bio-zirconia particles: characterization and application to the resolution of (R,S)-1-phenylethanol.
    Wang JY, Ma CL, Bao YM, Xu PS.
    Enzyme Microb Technol; 2012 Jun 10; 51(1):40-6. PubMed ID: 22579389
    [Abstract] [Full Text] [Related]

  • 10. Enhancement of the activity and enantioselectivity of lipase by sol-gel encapsulation immobilization onto β-cyclodextrin-based polymer.
    Yilmaz E, Sezgin M.
    Appl Biochem Biotechnol; 2012 Apr 10; 166(8):1927-40. PubMed ID: 22383051
    [Abstract] [Full Text] [Related]

  • 11. Immobilization of lipase B within micron-sized poly-N-isopropylacrylamide hydrogel particles by solvent exchange.
    Gawlitza K, Wu C, Georgieva R, Wang D, Ansorge-Schumacher MB, von Klitzing R.
    Phys Chem Chem Phys; 2012 Jul 21; 14(27):9594-600. PubMed ID: 22684227
    [Abstract] [Full Text] [Related]

  • 12. Tailoring a stable and recyclable nanobiocatalyst by immobilization of surfactant treated Burkholderia cepacia lipase on polyaniline nanofibers for biocatalytic application.
    Soni S, Dwivedee BP, Banerjee UC.
    Int J Biol Macromol; 2020 Oct 15; 161():573-586. PubMed ID: 32512104
    [Abstract] [Full Text] [Related]

  • 13. LiCl-induced improvement of multilayer nanofibrous lipase for biodiesel synthesis.
    Liu CX, Zhang SP, Su ZG, Wang P.
    Bioresour Technol; 2012 Jan 15; 103(1):266-72. PubMed ID: 22033374
    [Abstract] [Full Text] [Related]

  • 14. Factors governing the activity of lyophilised and immobilised lipase preparations in organic solvents.
    Persson M, Wehtje E, Adlercreutz P.
    Chembiochem; 2002 Jun 03; 3(6):566-71. PubMed ID: 12325013
    [Abstract] [Full Text] [Related]

  • 15. Electrospun polylactic acid and polyvinyl alcohol fibers as efficient and stable nanomaterials for immobilization of lipases.
    Sóti PL, Weiser D, Vigh T, Nagy ZK, Poppe L, Marosi G.
    Bioprocess Biosyst Eng; 2016 Mar 03; 39(3):449-59. PubMed ID: 26724947
    [Abstract] [Full Text] [Related]

  • 16. Template enhanced activity of lipase accommodated in siliceous mesocellular foams.
    Zhang Y, Zhao L, Li J, Zhang H, Zheng L, Cao S, Li C.
    Biochem Biophys Res Commun; 2008 Aug 08; 372(4):650-5. PubMed ID: 18510948
    [Abstract] [Full Text] [Related]

  • 17. Enhancing activity and stability of Burkholderia cepacia lipase by immobilization on surface-functionalized mesoporous silicates.
    Kato K, Seelan S.
    J Biosci Bioeng; 2010 Jun 08; 109(6):615-7. PubMed ID: 20471602
    [Abstract] [Full Text] [Related]

  • 18. Immobilization of cross-linked lipase aggregates onto magnetic beads for enzymatic degradation of polycaprolactone.
    Kim M, Park JM, Um HJ, Lee DH, Lee KH, Kobayashi F, Iwasaka Y, Hong CS, Min J, Kim YH.
    J Basic Microbiol; 2010 Jun 08; 50(3):218-26. PubMed ID: 20473952
    [Abstract] [Full Text] [Related]

  • 19. Immobilized Pseudomonas cepacia lipase for biodiesel fuel production from soybean oil.
    Noureddini H, Gao X, Philkana RS.
    Bioresour Technol; 2005 May 08; 96(7):769-77. PubMed ID: 15607189
    [Abstract] [Full Text] [Related]

  • 20. Immobilization of Pseudomonas cepacia lipase onto electrospun polyacrylonitrile fibers through physical adsorption and application to transesterification in nonaqueous solvent.
    Sakai S, Liu Y, Yamaguchi T, Watanabe R, Kawabe M, Kawakami K.
    Biotechnol Lett; 2010 Aug 08; 32(8):1059-62. PubMed ID: 20424890
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 18.