These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


291 related items for PubMed ID: 22400878

  • 1. Dipole coupling of a double quantum dot to a microwave resonator.
    Frey T, Leek PJ, Beck M, Blais A, Ihn T, Ensslin K, Wallraff A.
    Phys Rev Lett; 2012 Jan 27; 108(4):046807. PubMed ID: 22400878
    [Abstract] [Full Text] [Related]

  • 2. Coupling a Germanium Hut Wire Hole Quantum Dot to a Superconducting Microwave Resonator.
    Li Y, Li SX, Gao F, Li HO, Xu G, Wang K, Liu D, Cao G, Xiao M, Wang T, Zhang JJ, Guo GC, Guo GP.
    Nano Lett; 2018 Mar 14; 18(3):2091-2097. PubMed ID: 29468882
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Gate Tunable Hole Charge Qubit Formed in a Ge/Si Nanowire Double Quantum Dot Coupled to Microwave Photons.
    Wang R, Deacon RS, Sun J, Yao J, Lieber CM, Ishibashi K.
    Nano Lett; 2019 Feb 13; 19(2):1052-1060. PubMed ID: 30636426
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Parametric longitudinal coupling between a high-impedance superconducting resonator and a semiconductor quantum dot singlet-triplet spin qubit.
    Bøttcher CGL, Harvey SP, Fallahi S, Gardner GC, Manfra MJ, Vool U, Bartlett SD, Yacoby A.
    Nat Commun; 2022 Aug 15; 13(1):4773. PubMed ID: 35970821
    [Abstract] [Full Text] [Related]

  • 9. All-Microwave Control and Dispersive Readout of Gate-Defined Quantum Dot Qubits in Circuit Quantum Electrodynamics.
    Scarlino P, van Woerkom DJ, Stockklauser A, Koski JV, Collodo MC, Gasparinetti S, Reichl C, Wegscheider W, Ihn T, Ensslin K, Wallraff A.
    Phys Rev Lett; 2019 May 24; 122(20):206802. PubMed ID: 31172788
    [Abstract] [Full Text] [Related]

  • 10. Dressed-state amplification by a single superconducting qubit.
    Oelsner G, Macha P, Astafiev OV, Il'ichev E, Grajcar M, Hübner U, Ivanov BI, Neilinger P, Meyer HG.
    Phys Rev Lett; 2013 Feb 01; 110(5):053602. PubMed ID: 23414019
    [Abstract] [Full Text] [Related]

  • 11. Floquet Spectroscopy of a Strongly Driven Quantum Dot Charge Qubit with a Microwave Resonator.
    Koski JV, Landig AJ, Pályi A, Scarlino P, Reichl C, Wegscheider W, Burkard G, Wallraff A, Ensslin K, Ihn T.
    Phys Rev Lett; 2018 Jul 27; 121(4):043603. PubMed ID: 30095954
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Microwave Emission from Hybridized States in a Semiconductor Charge Qubit.
    Stockklauser A, Maisi VF, Basset J, Cujia K, Reichl C, Wegscheider W, Ihn T, Wallraff A, Ensslin K.
    Phys Rev Lett; 2015 Jul 24; 115(4):046802. PubMed ID: 26252704
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Strong coupling of spin qubits to a transmission line resonator.
    Jin PQ, Marthaler M, Shnirman A, Schön G.
    Phys Rev Lett; 2012 May 11; 108(19):190506. PubMed ID: 23003017
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 15.