These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


267 related items for PubMed ID: 22403398

  • 1. Small ubiquitin-like modifier (SUMO) modification of E1 Cys domain inhibits E1 Cys domain enzymatic activity.
    Truong K, Lee TD, Chen Y.
    J Biol Chem; 2012 May 04; 287(19):15154-63. PubMed ID: 22403398
    [Abstract] [Full Text] [Related]

  • 2. Domain alternation and active site remodeling are conserved structural features of ubiquitin E1.
    Lv Z, Yuan L, Atkison JH, Aldana-Masangkay G, Chen Y, Olsen SK.
    J Biol Chem; 2017 Jul 21; 292(29):12089-12099. PubMed ID: 28572513
    [Abstract] [Full Text] [Related]

  • 3. Mechanism of E1-E2 interaction for the inhibition of Ubl adenylation.
    Wang J, Cai S, Chen Y.
    J Biol Chem; 2010 Oct 22; 285(43):33457-33462. PubMed ID: 20682785
    [Abstract] [Full Text] [Related]

  • 4. E2-mediated small ubiquitin-like modifier (SUMO) modification of thymine DNA glycosylase is efficient but not selective for the enzyme-product complex.
    Coey CT, Fitzgerald ME, Maiti A, Reiter KH, Guzzo CM, Matunis MJ, Drohat AC.
    J Biol Chem; 2014 May 30; 289(22):15810-9. PubMed ID: 24753249
    [Abstract] [Full Text] [Related]

  • 5. The intrinsic affinity between E2 and the Cys domain of E1 in ubiquitin-like modifications.
    Wang J, Hu W, Cai S, Lee B, Song J, Chen Y.
    Mol Cell; 2007 Jul 20; 27(2):228-237. PubMed ID: 17643372
    [Abstract] [Full Text] [Related]

  • 6. Rhes, a physiologic regulator of sumoylation, enhances cross-sumoylation between the basic sumoylation enzymes E1 and Ubc9.
    Subramaniam S, Mealer RG, Sixt KM, Barrow RK, Usiello A, Snyder SH.
    J Biol Chem; 2010 Jul 02; 285(27):20428-32. PubMed ID: 20424159
    [Abstract] [Full Text] [Related]

  • 7. Regulation of SUMOylation by reversible oxidation of SUMO conjugating enzymes.
    Bossis G, Melchior F.
    Mol Cell; 2006 Feb 03; 21(3):349-57. PubMed ID: 16455490
    [Abstract] [Full Text] [Related]

  • 8. Structures of the SUMO E1 provide mechanistic insights into SUMO activation and E2 recruitment to E1.
    Lois LM, Lima CD.
    EMBO J; 2005 Feb 09; 24(3):439-51. PubMed ID: 15660128
    [Abstract] [Full Text] [Related]

  • 9. Structural insights into the regulation of the human E2∼SUMO conjugate through analysis of its stable mimetic.
    Goffinont S, Coste F, Prieu-Serandon P, Mance L, Gaudon V, Garnier N, Castaing B, Suskiewicz MJ.
    J Biol Chem; 2023 Jul 09; 299(7):104870. PubMed ID: 37247759
    [Abstract] [Full Text] [Related]

  • 10. MEL-18 interacts with HSF2 and the SUMO E2 UBC9 to inhibit HSF2 sumoylation.
    Zhang J, Goodson ML, Hong Y, Sarge KD.
    J Biol Chem; 2008 Mar 21; 283(12):7464-9. PubMed ID: 18211895
    [Abstract] [Full Text] [Related]

  • 11. Targeting SUMO E1 to ubiquitin ligases: a viral strategy to counteract sumoylation.
    Boggio R, Passafaro A, Chiocca S.
    J Biol Chem; 2007 May 25; 282(21):15376-82. PubMed ID: 17392274
    [Abstract] [Full Text] [Related]

  • 12. Identification of a non-covalent ternary complex formed by PIAS1, SUMO1, and UBC9 proteins involved in transcriptional regulation.
    Mascle XH, Lussier-Price M, Cappadocia L, Estephan P, Raiola L, Omichinski JG, Aubry M.
    J Biol Chem; 2013 Dec 20; 288(51):36312-27. PubMed ID: 24174529
    [Abstract] [Full Text] [Related]

  • 13. SUMOylation of the transcription factor ZFHX3 at Lys-2806 requires SAE1, UBC9, and PIAS2 and enhances its stability and function in cell proliferation.
    Wu R, Fang J, Liu M, A J, Liu J, Chen W, Li J, Ma G, Zhang Z, Zhang B, Fu L, Dong JT.
    J Biol Chem; 2020 May 08; 295(19):6741-6753. PubMed ID: 32249212
    [Abstract] [Full Text] [Related]

  • 14. RWD Domain as an E2 (Ubc9)-Interaction Module.
    Alontaga AY, Ambaye ND, Li YJ, Vega R, Chen CH, Bzymek KP, Williams JC, Hu W, Chen Y.
    J Biol Chem; 2015 Jul 03; 290(27):16550-9. PubMed ID: 25918163
    [Abstract] [Full Text] [Related]

  • 15. Diversification of SUMO-activating enzyme in Arabidopsis: implications in SUMO conjugation.
    Castaño-Miquel L, Seguí J, Manrique S, Teixeira I, Carretero-Paulet L, Atencio F, Lois LM.
    Mol Plant; 2013 Sep 03; 6(5):1646-60. PubMed ID: 23482370
    [Abstract] [Full Text] [Related]

  • 16. Site-specific inhibition of the small ubiquitin-like modifier (SUMO)-conjugating enzyme Ubc9 selectively impairs SUMO chain formation.
    Wiechmann S, Gärtner A, Kniss A, Stengl A, Behrends C, Rogov VV, Rodriguez MS, Dötsch V, Müller S, Ernst A.
    J Biol Chem; 2017 Sep 15; 292(37):15340-15351. PubMed ID: 28784659
    [Abstract] [Full Text] [Related]

  • 17. Biochemical characterization of SUMO-conjugating enzymes by in vitro sumoylation assays.
    Eisenhardt N, Ilic D, Nagamalleswari E, Pichler A.
    Methods Enzymol; 2019 Sep 15; 618():167-185. PubMed ID: 30850051
    [Abstract] [Full Text] [Related]

  • 18. Characterization of a novel posttranslational modification in neuronal nitric oxide synthase by small ubiquitin-related modifier-1.
    Watanabe M, Itoh K.
    Biochim Biophys Acta; 2011 Jul 15; 1814(7):900-7. PubMed ID: 21545853
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 14.