These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
537 related items for PubMed ID: 22404375
21. Systematic truncating of aptamers to create high-performance graphene oxide (GO)-based aptasensors for the multiplex detection of mycotoxins. Wang X, Gao X, He J, Hu X, Li Y, Li X, Fan L, Yu HZ. Analyst; 2019 Jun 21; 144(12):3826-3835. PubMed ID: 31090762 [Abstract] [Full Text] [Related]
22. Highly sensitive detection for proteins using graphene oxide-aptamer based sensors. Gao L, Li Q, Li R, Yan L, Zhou Y, Chen K, Shi H. Nanoscale; 2015 Jul 07; 7(25):10903-7. PubMed ID: 25939390 [Abstract] [Full Text] [Related]
24. Low background signal platform for the detection of ATP: when a molecular aptamer beacon meets graphene oxide. He Y, Wang ZG, Tang HW, Pang DW. Biosens Bioelectron; 2011 Nov 15; 29(1):76-81. PubMed ID: 21889887 [Abstract] [Full Text] [Related]
25. Multiplexed fluorescence resonance energy transfer aptasensor between upconversion nanoparticles and graphene oxide for the simultaneous determination of mycotoxins. Wu S, Duan N, Ma X, Xia Y, Wang H, Wang Z, Zhang Q. Anal Chem; 2012 Jul 17; 84(14):6263-70. PubMed ID: 22816786 [Abstract] [Full Text] [Related]
26. An extremely sensitive aptasensor based on interfacial energy transfer between QDS SAMs and GO. Sun X, Liu B, Yang C, Li C. Spectrochim Acta A Mol Biomol Spectrosc; 2014 Oct 15; 131():288-93. PubMed ID: 24835931 [Abstract] [Full Text] [Related]
27. A self-assembling RNA aptamer-based graphene oxide sensor for the turn-on detection of theophylline in serum. Ling K, Jiang H, Li Y, Tao X, Qiu C, Li FR. Biosens Bioelectron; 2016 Dec 15; 86():8-13. PubMed ID: 27318104 [Abstract] [Full Text] [Related]
28. Protein determination using graphene oxide-aptamer modified gold nanoparticles in combination with Tween 80. Gao L, Li Q, Li R, Deng Z, Brady B, Xia N, Chen G, Zhou Y, Xia H, Chen K, Shi H. Anal Chim Acta; 2016 Oct 19; 941():80-86. PubMed ID: 27692381 [Abstract] [Full Text] [Related]
29. A novel fluorescent biosensor for sequence-specific recognition of double-stranded DNA with the platform of graphene oxide. Wu C, Zhou Y, Miao X, Ling L. Analyst; 2011 May 21; 136(10):2106-10. PubMed ID: 21442091 [Abstract] [Full Text] [Related]
30. Coherent activation of DNA tweezers: a "SET-RESET" logic system. Elbaz J, Moshe M, Willner I. Angew Chem Int Ed Engl; 2009 May 21; 48(21):3834-7. PubMed ID: 19378312 [Abstract] [Full Text] [Related]
31. Impedimetric thrombin aptasensor based on chemically modified graphenes. Loo AH, Bonanni A, Pumera M. Nanoscale; 2012 Jan 07; 4(1):143-7. PubMed ID: 22068751 [Abstract] [Full Text] [Related]
32. Nucleic acid driven DNA machineries synthesizing Mg2+-dependent DNAzymes: an interplay between DNA sensing and logic-gate operations. Orbach R, Mostinski L, Wang F, Willner I. Chemistry; 2012 Nov 12; 18(46):14689-94. PubMed ID: 23015539 [Abstract] [Full Text] [Related]
33. Molecular beacon lighting up on graphene oxide. Huang PJ, Liu J. Anal Chem; 2012 May 01; 84(9):4192-8. PubMed ID: 22489847 [Abstract] [Full Text] [Related]
34. A reversible fluorescent DNA logic gate based on graphene oxide and its application for iodide sensing. Zhang M, Ye BC. Chem Commun (Camb); 2012 Apr 14; 48(30):3647-9. PubMed ID: 22395094 [Abstract] [Full Text] [Related]
35. A universal aptasensing platform based on cryonase-assisted signal amplification and graphene oxide induced quenching of the fluorescence of labeled nucleic acid probes: application to the detection of theophylline and ATP. Lou YF, Peng YB, Luo X, Yang Z, Wang R, Sun D, Li L, Tan Y, Huang J, Cui L. Mikrochim Acta; 2019 Jul 02; 186(8):494. PubMed ID: 31267250 [Abstract] [Full Text] [Related]
36. Carcino-embryonic antigen detection based on fluorescence resonance energy transfer between quantum dots and graphene oxide. Zhou ZM, Zhou J, Chen J, Yu RN, Zhang MZ, Song JT, Zhao YD. Biosens Bioelectron; 2014 Sep 15; 59():397-403. PubMed ID: 24768819 [Abstract] [Full Text] [Related]
37. Rapid Fluorescent Detection of Enterotoxigenic Escherichia coli (ETEC) K88 Based on Graphene Oxide-Dependent Nanoquencher and Klenow Fragment-Triggered Target Cyclic Amplification. Ling M, Peng Z, Cheng L, Deng L. Appl Spectrosc; 2015 Oct 15; 69(10):1175-81. PubMed ID: 26449811 [Abstract] [Full Text] [Related]
38. Fluorometric graphene oxide-based detection of Salmonella enteritis using a truncated DNA aptamer. Chinnappan R, AlAmer S, Eissa S, Rahamn AA, Abu Salah KM, Zourob M. Mikrochim Acta; 2017 Dec 18; 185(1):61. PubMed ID: 29594712 [Abstract] [Full Text] [Related]
39. A general fluorescent sensor design strategy for "turn-on" activity detection of exonucleases and restriction endonucleases based on graphene oxide. Zhang Q, Kong DM. Analyst; 2013 Nov 07; 138(21):6437-44. PubMed ID: 24013214 [Abstract] [Full Text] [Related]
40. A graphene platform for sensing biomolecules. Lu CH, Yang HH, Zhu CL, Chen X, Chen GN. Angew Chem Int Ed Engl; 2009 Nov 07; 48(26):4785-7. PubMed ID: 19475600 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]