These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


265 related items for PubMed ID: 22405054

  • 21. Essential Protein Detection by Random Walk on Weighted Protein-Protein Interaction Networks.
    Xu B, Guan J, Wang Y, Wang Z.
    IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(2):377-387. PubMed ID: 28504946
    [Abstract] [Full Text] [Related]

  • 22.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 23.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 24. DiffSLC: A graph centrality method to detect essential proteins of a protein-protein interaction network.
    Mistry D, Wise RP, Dickerson JA.
    PLoS One; 2017; 12(11):e0187091. PubMed ID: 29121073
    [Abstract] [Full Text] [Related]

  • 25.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 26. United Complex Centrality for Identification of Essential Proteins from PPI Networks.
    Li M, Lu Y, Niu Z, Wu FX.
    IEEE/ACM Trans Comput Biol Bioinform; 2017; 14(2):370-380. PubMed ID: 28368815
    [Abstract] [Full Text] [Related]

  • 27. A systematic survey of centrality measures for protein-protein interaction networks.
    Ashtiani M, Salehzadeh-Yazdi A, Razaghi-Moghadam Z, Hennig H, Wolkenhauer O, Mirzaie M, Jafari M.
    BMC Syst Biol; 2018 Jul 31; 12(1):80. PubMed ID: 30064421
    [Abstract] [Full Text] [Related]

  • 28. Identifying essential proteins based on sub-network partition and prioritization by integrating subcellular localization information.
    Li M, Li W, Wu FX, Pan Y, Wang J.
    J Theor Biol; 2018 Jun 14; 447():65-73. PubMed ID: 29571709
    [Abstract] [Full Text] [Related]

  • 29.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 30.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 31.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 32.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 33.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 34.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 35. Localized network centrality and essentiality in the yeast-protein interaction network.
    Park K, Kim D.
    Proteomics; 2009 Nov 14; 9(22):5143-54. PubMed ID: 19771559
    [Abstract] [Full Text] [Related]

  • 36. Why do hubs in the yeast protein interaction network tend to be essential: reexamining the connection between the network topology and essentiality.
    Zotenko E, Mestre J, O'Leary DP, Przytycka TM.
    PLoS Comput Biol; 2008 Aug 01; 4(8):e1000140. PubMed ID: 18670624
    [Abstract] [Full Text] [Related]

  • 37. Predicting essential proteins by integrating orthology, gene expressions, and PPI networks.
    Zhang X, Xiao W, Hu X.
    PLoS One; 2018 Aug 01; 13(4):e0195410. PubMed ID: 29634727
    [Abstract] [Full Text] [Related]

  • 38. Discovering essential proteins based on PPI network and protein complex.
    Ren J, Wang J, Li M, Wu F.
    Int J Data Min Bioinform; 2015 Aug 01; 12(1):24-43. PubMed ID: 26489140
    [Abstract] [Full Text] [Related]

  • 39. A new measure of centrality for brain networks.
    Joyce KE, Laurienti PJ, Burdette JH, Hayasaka S.
    PLoS One; 2010 Aug 16; 5(8):e12200. PubMed ID: 20808943
    [Abstract] [Full Text] [Related]

  • 40. Characterization of protein-interaction networks in tumors.
    Platzer A, Perco P, Lukas A, Mayer B.
    BMC Bioinformatics; 2007 Jun 27; 8():224. PubMed ID: 17597514
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 14.