These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


806 related items for PubMed ID: 22410845

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. Long-term evaluation of a 4-class imagery-based brain-computer interface.
    Friedrich EV, Scherer R, Neuper C.
    Clin Neurophysiol; 2013 May; 124(5):916-27. PubMed ID: 23290926
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Effect of real-time cortical feedback in motor imagery-based mental practice training.
    Bai O, Huang D, Fei DY, Kunz R.
    NeuroRehabilitation; 2014 May; 34(2):355-63. PubMed ID: 24401829
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Brain-computer interfaces for 1-D and 2-D cursor control: designs using volitional control of the EEG spectrum or steady-state visual evoked potentials.
    Trejo LJ, Rosipal R, Matthews B.
    IEEE Trans Neural Syst Rehabil Eng; 2006 Jun; 14(2):225-9. PubMed ID: 16792300
    [Abstract] [Full Text] [Related]

  • 12. Hybrid brain-computer interfaces and hybrid neuroprostheses for restoration of upper limb functions in individuals with high-level spinal cord injury.
    Rohm M, Schneiders M, Müller C, Kreilinger A, Kaiser V, Müller-Putz GR, Rupp R.
    Artif Intell Med; 2013 Oct; 59(2):133-42. PubMed ID: 24064256
    [Abstract] [Full Text] [Related]

  • 13. Motor imagery-induced EEG patterns in individuals with spinal cord injury and their impact on brain-computer interface accuracy.
    Müller-Putz GR, Daly I, Kaiser V.
    J Neural Eng; 2014 Jun; 11(3):035011. PubMed ID: 24835837
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Individually adapted imagery improves brain-computer interface performance in end-users with disability.
    Scherer R, Faller J, Friedrich EV, Opisso E, Costa U, Kübler A, Müller-Putz GR.
    PLoS One; 2015 Jun; 10(5):e0123727. PubMed ID: 25992718
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Sensorimotor rhythm-based brain-computer interface training: the impact on motor cortical responsiveness.
    Pichiorri F, De Vico Fallani F, Cincotti F, Babiloni F, Molinari M, Kleih SC, Neuper C, Kübler A, Mattia D.
    J Neural Eng; 2011 Apr; 8(2):025020. PubMed ID: 21436514
    [Abstract] [Full Text] [Related]

  • 19. Cortical effects of user training in a motor imagery based brain-computer interface measured by fNIRS and EEG.
    Kaiser V, Bauernfeind G, Kreilinger A, Kaufmann T, Kübler A, Neuper C, Müller-Putz GR.
    Neuroimage; 2014 Jan 15; 85 Pt 1():432-44. PubMed ID: 23651839
    [Abstract] [Full Text] [Related]

  • 20. Performance of motor imagery brain-computer interface based on anodal transcranial direct current stimulation modulation.
    Wei P, He W, Zhou Y, Wang L.
    IEEE Trans Neural Syst Rehabil Eng; 2013 May 15; 21(3):404-15. PubMed ID: 23475381
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 41.