These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


316 related items for PubMed ID: 22412983

  • 1. Expression patterns of genes involved in sugar metabolism and accumulation during apple fruit development.
    Li M, Feng F, Cheng L.
    PLoS One; 2012; 7(3):e33055. PubMed ID: 22412983
    [Abstract] [Full Text] [Related]

  • 2. Response of sugar metabolism in apple leaves subjected to short-term drought stress.
    Yang J, Zhang J, Li C, Zhang Z, Ma F, Li M.
    Plant Physiol Biochem; 2019 Aug; 141():164-171. PubMed ID: 31170640
    [Abstract] [Full Text] [Related]

  • 3. Silencing leaf sorbitol synthesis alters long-distance partitioning and apple fruit quality.
    Teo G, Suzuki Y, Uratsu SL, Lampinen B, Ormonde N, Hu WK, DeJong TM, Dandekar AM.
    Proc Natl Acad Sci U S A; 2006 Dec 05; 103(49):18842-7. PubMed ID: 17132742
    [Abstract] [Full Text] [Related]

  • 4. Sugar metabolism and accumulation in the fruit of transgenic apple trees with decreased sorbitol synthesis.
    Li M, Li P, Ma F, Dandekar AM, Cheng L.
    Hortic Res; 2018 Dec 05; 5():60. PubMed ID: 30510767
    [Abstract] [Full Text] [Related]

  • 5. Characterisation of genes encoding key enzymes involved in sugar metabolism of apple fruit in controlled atmosphere storage.
    Zhu Z, Liu R, Li B, Tian S.
    Food Chem; 2013 Dec 15; 141(4):3323-8. PubMed ID: 23993488
    [Abstract] [Full Text] [Related]

  • 6. Effects of foliar application of single-walled carbon nanotubes on carbohydrate metabolism in crabapple plants.
    Wu M, Su H, Li C, Fu Z, Wu F, Yang J, Wang L.
    Plant Physiol Biochem; 2023 Jan 15; 194():214-222. PubMed ID: 36427383
    [Abstract] [Full Text] [Related]

  • 7. Comparative transcriptome analysis reveals key genes potentially related to organic acid and sugar accumulation in loquat.
    Yang J, Zhang J, Niu XQ, Zheng XL, Chen X, Zheng GH, Wu JC.
    PLoS One; 2021 Jan 15; 16(4):e0238873. PubMed ID: 33914776
    [Abstract] [Full Text] [Related]

  • 8. The MdCBF1/2-MdTST1/2 module regulates sugar accumulation in response to low temperature in apple.
    Li B, Qu S, Kang J, Peng Y, Yang N, Ma B, Ruan YL, Ma F, Li M, Zhu L.
    Plant J; 2024 May 15; 118(3):787-801. PubMed ID: 38206080
    [Abstract] [Full Text] [Related]

  • 9. MdbHLH3 modulates apple soluble sugar content by activating phosphofructokinase gene expression.
    Yu JQ, Gu KD, Zhang LL, Sun CH, Zhang QY, Wang JH, Wang CK, Wang WY, Du MC, Hu DG.
    J Integr Plant Biol; 2022 Apr 15; 64(4):884-900. PubMed ID: 35199464
    [Abstract] [Full Text] [Related]

  • 10. Carbohydrate metabolism and transport in apple roots under nitrogen deficiency.
    Zhao H, Sun S, Zhang L, Yang J, Wang Z, Ma F, Li M.
    Plant Physiol Biochem; 2020 Oct 15; 155():455-463. PubMed ID: 32823246
    [Abstract] [Full Text] [Related]

  • 11. Down-regulation of sorbitol dehydrogenase and up-regulation of sucrose synthase in shoot tips of the transgenic apple trees with decreased sorbitol synthesis.
    Zhou R, Cheng L, Dandekar AM.
    J Exp Bot; 2006 Oct 15; 57(14):3647-57. PubMed ID: 16980595
    [Abstract] [Full Text] [Related]

  • 12. Heterologous expression of the apple hexose transporter MdHT2.2 altered sugar concentration with increasing cell wall invertase activity in tomato fruit.
    Wang Z, Wei X, Yang J, Li H, Ma B, Zhang K, Zhang Y, Cheng L, Ma F, Li M.
    Plant Biotechnol J; 2020 Feb 15; 18(2):540-552. PubMed ID: 31350935
    [Abstract] [Full Text] [Related]

  • 13. New Insights into MdSPS4-Mediated Sucrose Accumulation under Different Nitrogen Levels Revealed by Physiological and Transcriptomic Analysis.
    Cao X, Li W, Wang P, Ma Z, Mao J, Chen B.
    Int J Mol Sci; 2022 Dec 16; 23(24):. PubMed ID: 36555711
    [Abstract] [Full Text] [Related]

  • 14. MdERDL6-mediated glucose efflux to the cytosol promotes sugar accumulation in the vacuole through up-regulating TSTs in apple and tomato.
    Zhu L, Li B, Wu L, Li H, Wang Z, Wei X, Ma B, Zhang Y, Ma F, Ruan YL, Li M.
    Proc Natl Acad Sci U S A; 2021 Jan 05; 118(1):. PubMed ID: 33443220
    [Abstract] [Full Text] [Related]

  • 15. Transcriptional landscape and dynamics involved in sugar and acid accumulation during apple fruit development.
    Li B, Zhu L, Yang N, Qu S, Cao W, Ma W, Wei X, Ma B, Ma F, Fu A, Li M.
    Plant Physiol; 2024 Jul 31; 195(4):2772-2786. PubMed ID: 38728429
    [Abstract] [Full Text] [Related]

  • 16. Expression patterns, activities and carbohydrate-metabolizing regulation of sucrose phosphate synthase, sucrose synthase and neutral invertase in pineapple fruit during development and ripening.
    Zhang XM, Wang W, Du LQ, Xie JH, Yao YL, Sun GM.
    Int J Mol Sci; 2012 Jul 31; 13(8):9460-9477. PubMed ID: 22949808
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Gene expression and biochemical changes of carbohydrate metabolism in in vitro micro-propagated apple plantlets infected by 'Candidatus Phytoplasma mali'.
    Giorno F, Guerriero G, Biagetti M, Ciccotti AM, Baric S.
    Plant Physiol Biochem; 2013 Sep 31; 70():311-7. PubMed ID: 23811119
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 16.