These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


111 related items for PubMed ID: 22425400

  • 1. Direct ethanol production from cellulosic materials by the hypersaline-tolerant white-rot fungus Phlebia sp. MG-60.
    Kamei I, Hirota Y, Mori T, Hirai H, Meguro S, Kondo R.
    Bioresour Technol; 2012 May; 112():137-42. PubMed ID: 22425400
    [Abstract] [Full Text] [Related]

  • 2. Efficient xylose fermentation by the brown rot fungus Neolentinus lepideus.
    Okamoto K, Kanawaku R, Masumoto M, Yanase H.
    Enzyme Microb Technol; 2012 Feb 10; 50(2):96-100. PubMed ID: 22226194
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Fermentation of xylose into ethanol by a new fungus strain Pestalotiopsis sp. XE-1.
    Pang ZW, Liang JJ, Huang RB.
    J Ind Microbiol Biotechnol; 2011 Aug 10; 38(8):927-33. PubMed ID: 20824485
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Enzymatic hydrolysis of sodium dodecyl sulphate (SDS)-pretreated newspaper for cellulosic ethanol production by Saccharomyces cerevisiae and Pichia stipitis.
    Xin F, Geng A, Chen ML, Gum MJ.
    Appl Biochem Biotechnol; 2010 Oct 10; 162(4):1052-64. PubMed ID: 19936631
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Conservation of Xylose Fermentability in Phlebia Species and Direct Fermentation of Xylan by Selected Fungi.
    Kamei I, Uchida K, Ardianti V.
    Appl Biochem Biotechnol; 2020 Nov 10; 192(3):895-909. PubMed ID: 32607899
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Direct ethanol production from cellulosic materials at high temperature using the thermotolerant yeast Kluyveromyces marxianus displaying cellulolytic enzymes.
    Yanase S, Hasunuma T, Yamada R, Tanaka T, Ogino C, Fukuda H, Kondo A.
    Appl Microbiol Biotechnol; 2010 Sep 10; 88(1):381-8. PubMed ID: 20676628
    [Abstract] [Full Text] [Related]

  • 14. Direct ethanol production from cellulosic materials by consolidated biological processing using the wood rot fungus Schizophyllum commune.
    Horisawa S, Ando H, Ariga O, Sakuma Y.
    Bioresour Technol; 2015 Dec 10; 197():37-41. PubMed ID: 26318920
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Upregulation of MAP kinase HOG1 gene of white-rot fungus Phlebia sp. MG-60 inhibits the ethanol fermentation and mycelial growth.
    Motoda T, Chen FC, Tsuyama T, Tokumoto Y, Kijidani Y, Kamei I.
    Biosci Biotechnol Biochem; 2023 Jan 24; 87(2):217-227. PubMed ID: 36610726
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. The influence of presaccharification, fermentation temperature and yeast strain on ethanol production from sugarcane bagasse.
    de Souza CJ, Costa DA, Rodrigues MQ, dos Santos AF, Lopes MR, Abrantes AB, dos Santos Costa P, Silveira WB, Passos FM, Fietto LG.
    Bioresour Technol; 2012 Apr 24; 109():63-9. PubMed ID: 22285296
    [Abstract] [Full Text] [Related]

  • 19. Ethanol Production from Various Sugars and Cellulosic Biomass by White Rot Fungus Lenzites betulinus.
    Im KH, Nguyen TK, Choi J, Lee TS.
    Mycobiology; 2016 Mar 24; 44(1):48-53. PubMed ID: 27103854
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 6.