These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


563 related items for PubMed ID: 22430593

  • 21. A human-like collagen/chitosan electrospun nanofibrous scaffold from aqueous solution: electrospun mechanism and biocompatibility.
    Chen L, Zhu C, Fan D, Liu B, Ma X, Duan Z, Zhou Y.
    J Biomed Mater Res A; 2011 Dec 01; 99(3):395-409. PubMed ID: 22021187
    [Abstract] [Full Text] [Related]

  • 22. Fabrication and characterization of a novel compliant small-diameter PET/PU/PCL triad-hybrid vascular graft.
    Jirofti N, Mohebbi-Kalhori D, Samimi A, Hadjizadeh A, Kazemzadeh GH.
    Biomed Mater; 2020 Jul 15; 15(5):055004. PubMed ID: 32259799
    [Abstract] [Full Text] [Related]

  • 23. Electrospun biphasic tubular scaffold with enhanced mechanical properties for vascular tissue engineering.
    Abdal-Hay A, Bartnikowski M, Hamlet S, Ivanovski S.
    Mater Sci Eng C Mater Biol Appl; 2018 Jan 01; 82():10-18. PubMed ID: 29025637
    [Abstract] [Full Text] [Related]

  • 24. Preparation, characterization and blood compatibility assessment of a novel electrospun nanocomposite comprising polyurethane and ayurvedic-indhulekha oil for tissue engineering applications.
    Ayyar M, Mani MP, Jaganathan SK, Rathanasamy R.
    Biomed Tech (Berl); 2018 Jun 27; 63(3):245-253. PubMed ID: 28678733
    [Abstract] [Full Text] [Related]

  • 25. Genipin-crosslinked silk fibroin/hydroxybutyl chitosan nanofibrous scaffolds for tissue-engineering application.
    Zhang K, Qian Y, Wang H, Fan L, Huang C, Yin A, Mo X.
    J Biomed Mater Res A; 2010 Dec 01; 95(3):870-81. PubMed ID: 20824649
    [Abstract] [Full Text] [Related]

  • 26. Design and characterization of PEGylated terpolymer biomaterials.
    Heath DE, Cooper SL.
    J Biomed Mater Res A; 2010 Sep 15; 94(4):1294-302. PubMed ID: 20694997
    [Abstract] [Full Text] [Related]

  • 27. Resveratrol-loaded polyurethane nanofibrous scaffold: viability of endothelial and smooth muscle cells.
    Asadpour S, Yeganeh H, Khademi F, Ghanbari H, Ai J.
    Biomed Mater; 2019 Nov 15; 15(1):015001. PubMed ID: 31618720
    [Abstract] [Full Text] [Related]

  • 28. Polyurethane/chitosan/hyaluronic acid scaffolds: providing an optimum environment for fibroblast growth.
    Hashemi SS, Rajabi SS, Mahmoudi R, Ghanbari A, Zibara K, Barmak MJ.
    J Wound Care; 2020 Oct 02; 29(10):586-596. PubMed ID: 33052794
    [Abstract] [Full Text] [Related]

  • 29. Stem cell differentiation on electrospun nanofibrous substrates for vascular tissue engineering.
    Jia L, Prabhakaran MP, Qin X, Ramakrishna S.
    Mater Sci Eng C Mater Biol Appl; 2013 Dec 01; 33(8):4640-50. PubMed ID: 24094171
    [Abstract] [Full Text] [Related]

  • 30. [Synthesis, characterization and electrospinning of biodegradable polyurethanes based on poly(epsilon-caprolactone) and L-lysine diisocynate].
    Han J, Ye L, Zhang A, Feng Z.
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2010 Dec 01; 27(6):1274-9. PubMed ID: 21374978
    [Abstract] [Full Text] [Related]

  • 31.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 32.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 33. Designing poly[(R)-3-hydroxybutyrate]-based polyurethane block copolymers for electrospun nanofiber scaffolds with improved mechanical properties and enhanced mineralization capability.
    Liu KL, Choo ES, Wong SY, Li X, He CB, Wang J, Li J.
    J Phys Chem B; 2010 Jun 10; 114(22):7489-98. PubMed ID: 20469884
    [Abstract] [Full Text] [Related]

  • 34. Electrospun collagen-chitosan-TPU nanofibrous scaffolds for tissue engineered tubular grafts.
    Huang C, Chen R, Ke Q, Morsi Y, Zhang K, Mo X.
    Colloids Surf B Biointerfaces; 2011 Feb 01; 82(2):307-15. PubMed ID: 20888196
    [Abstract] [Full Text] [Related]

  • 35.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 36. Cellular response of limbal epithelial cells on electrospun poly-ε-caprolactone nanofibrous scaffolds for ocular surface bioengineering: a preliminary in vitro study.
    Sharma S, Mohanty S, Gupta D, Jassal M, Agrawal AK, Tandon R.
    Mol Vis; 2011 Feb 01; 17():2898-910. PubMed ID: 22128237
    [Abstract] [Full Text] [Related]

  • 37.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 38.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 39. A novel polymeric fibrous microstructured biodegradable small-caliber tubular scaffold for cardiovascular tissue engineering.
    Dimopoulos A, Markatos DN, Mitropoulou A, Panagiotopoulos I, Koletsis E, Mavrilas D.
    J Mater Sci Mater Med; 2021 Mar 01; 32(2):21. PubMed ID: 33649939
    [Abstract] [Full Text] [Related]

  • 40. The effects of monoacrylated poly(ethylene glycol) on the properties of poly(ethylene glycol) diacrylate hydrogels used for tissue engineering.
    Beamish JA, Zhu J, Kottke-Marchant K, Marchant RE.
    J Biomed Mater Res A; 2010 Feb 01; 92(2):441-50. PubMed ID: 19191313
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 29.