These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
398 related items for PubMed ID: 22432308
1. Mercury removals by existing pollutants control devices of four coal-fired power plants in China. Wang J, Wang W, Xu W, Wang X, Zhao S. J Environ Sci (China); 2011; 23(11):1839-44. PubMed ID: 22432308 [Abstract] [Full Text] [Related]
2. Distribution of mercury in the combustion products from coal-fired power plants in Guizhou, southwest China. Liu S, Chen J, Cao Y, Yang H, Chen C, Jia W. J Air Waste Manag Assoc; 2019 Feb; 69(2):234-245. PubMed ID: 30396327 [Abstract] [Full Text] [Related]
3. Mercury speciation and mass distribution of coal-fired power plants in Taiwan using different air pollution control processes. Chou CP, Chiu CH, Chang TC, Hsi HC. J Air Waste Manag Assoc; 2021 May; 71(5):553-563. PubMed ID: 33284737 [Abstract] [Full Text] [Related]
4. Measurement of mercury in flue gas based on an aluminum matrix sorbent. Wang J, Xu W, Wang X, Wang W. ScientificWorldJournal; 2011 May; 11():2469-79. PubMed ID: 22235178 [Abstract] [Full Text] [Related]
5. Distribution and Fate of Mercury in Pulverized Bituminous Coal-Fired Power Plants in Coal Energy-Dominant Huainan City, China. Chen B, Liu G, Sun R. Arch Environ Contam Toxicol; 2016 May; 70(4):724-33. PubMed ID: 26883032 [Abstract] [Full Text] [Related]
6. Understanding selected trace elements behavior in a coal-fired power plant in Malaysia for assessment of abatement technologies. Mokhtar MM, Taib RM, Hassim MH. J Air Waste Manag Assoc; 2014 Aug; 64(8):867-78. PubMed ID: 25185389 [Abstract] [Full Text] [Related]
7. The fate and behavior of mercury in coal-fired power plants. Meij R, Vredenbregt LH, te Winkel H. J Air Waste Manag Assoc; 2002 Aug; 52(8):912-7. PubMed ID: 12184689 [Abstract] [Full Text] [Related]
8. Mercury emissions from a coal-fired power plant in Japan. Yokoyama T, Asakura K, Matsuda H, Ito S, Noda N. Sci Total Environ; 2000 Oct 02; 259(1-3):97-103. PubMed ID: 11032139 [Abstract] [Full Text] [Related]
9. Study on emission of hazardous trace elements in a 350 MW coal-fired power plant. Part 1. Mercury. Zhao S, Duan Y, Chen L, Li Y, Yao T, Liu S, Liu M, Lu J. Environ Pollut; 2017 Oct 02; 229():863-870. PubMed ID: 28779897 [Abstract] [Full Text] [Related]
10. Control strategies of atmospheric mercury emissions from coal-fired power plants in China. Tian H, Wang Y, Cheng K, Qu Y, Hao J, Xue Z, Chai F. J Air Waste Manag Assoc; 2012 May 02; 62(5):576-86. PubMed ID: 22696807 [Abstract] [Full Text] [Related]
11. Synergistic mercury removal by conventional pollutant control strategies for coal-fired power plants in China. Wang S, Zhang L, Wu Y, Ancora MP, Zhao Y, Hao J. J Air Waste Manag Assoc; 2010 Jun 02; 60(6):722-30. PubMed ID: 20564998 [Abstract] [Full Text] [Related]
12. Mercury speciation and distribution in a 660-megawatt utility boiler in Taiwan firing bituminous coals. Hsi HC, Lee HH, Hwang JF, Chen W. J Air Waste Manag Assoc; 2010 May 02; 60(5):514-22. PubMed ID: 20480850 [Abstract] [Full Text] [Related]
13. As, Hg, and Se flue gas sampling in a coal-fired power plant and their fate during coal combustion. Otero-Rey JR, López-Vilariño JM, Moreda-Piñeiro J, Alonso-Rodríguez E, Muniategui-Lorenzo S, López-Mahía P, Prada-Rodríguez D. Environ Sci Technol; 2003 Nov 15; 37(22):5262-7. PubMed ID: 14655716 [Abstract] [Full Text] [Related]
14. Arsenic emission and distribution characteristics in the ultra-low emission coal-fired power plant. Han L, Zhao Y, Hao R. Environ Sci Pollut Res Int; 2022 May 15; 29(24):36814-36823. PubMed ID: 35064494 [Abstract] [Full Text] [Related]
15. Emission characteristics and removal of heavy metals in flue gas: a case study in waste incineration and coal-fired power plants. Zhao B, Liu W, Wang X, Lu J. Environ Sci Pollut Res Int; 2024 Feb 15; 31(6):8883-8897. PubMed ID: 38180667 [Abstract] [Full Text] [Related]
16. Study on emission of hazardous trace elements in a 350 MW coal-fired power plant. Part 2. arsenic, chromium, barium, manganese, lead. Zhao S, Duan Y, Chen L, Li Y, Yao T, Liu S, Liu M, Lu J. Environ Pollut; 2017 Jul 15; 226():404-411. PubMed ID: 28416223 [Abstract] [Full Text] [Related]
18. Behavior of thallium in pulverized coal utility boiler installations in Southwest China. Li Z, Zhou X, Wang Q, Li X, Zhang L, Wang D, He T, Cao Y, Feng X. J Air Waste Manag Assoc; 2021 Apr 15; 71(4):488-500. PubMed ID: 33216702 [Abstract] [Full Text] [Related]
19. Adsorbents for capturing mercury in coal-fired boiler flue gas. Yang H, Xu Z, Fan M, Bland AE, Judkins RR. J Hazard Mater; 2007 Jul 19; 146(1-2):1-11. PubMed ID: 17544578 [Abstract] [Full Text] [Related]
20. Mercury mass balances: a case study of two North Dakota power plants. Laudal DL, Pavlish JH, Graves J, Stockdill D. J Air Waste Manag Assoc; 2000 Oct 19; 50(10):1798-804. PubMed ID: 11288308 [Abstract] [Full Text] [Related] Page: [Next] [New Search]