These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
283 related items for PubMed ID: 22434254
1. Decline in voluntary activation contributes to reduced maximal performance of fatigued human lower limb muscles. Mileva KN, Sumners DP, Bowtell JL. Eur J Appl Physiol; 2012 Dec; 112(12):3959-70. PubMed ID: 22434254 [Abstract] [Full Text] [Related]
2. Sustained Maximal Voluntary Contractions Elicit Different Neurophysiological Responses in Upper- and Lower-Limb Muscles in Men. Temesi J, Vernillo G, Martin M, Krüger RL, McNeil CJ, Millet GY. Neuroscience; 2019 Dec 01; 422():88-98. PubMed ID: 31682821 [Abstract] [Full Text] [Related]
3. Effects of fatigue on corticospinal excitability of the human knee extensors. Kennedy DS, McNeil CJ, Gandevia SC, Taylor JL. Exp Physiol; 2016 Dec 01; 101(12):1552-1564. PubMed ID: 27652591 [Abstract] [Full Text] [Related]
4. Measurement of voluntary activation of fresh and fatigued human muscles using transcranial magnetic stimulation. Todd G, Taylor JL, Gandevia SC. J Physiol; 2003 Sep 01; 551(Pt 2):661-71. PubMed ID: 12909682 [Abstract] [Full Text] [Related]
5. Stimulation of the motor cortex and corticospinal tract to assess human muscle fatigue. Gruet M, Temesi J, Rupp T, Levy P, Millet GY, Verges S. Neuroscience; 2013 Feb 12; 231():384-99. PubMed ID: 23131709 [Abstract] [Full Text] [Related]
6. Spinal contribution to neuromuscular recovery differs between elbow-flexor and knee-extensor muscles after a maximal sustained fatiguing task. Vernillo G, Temesi J, Martin M, Krüger RL, Millet GY. J Neurophysiol; 2020 Sep 01; 124(3):763-773. PubMed ID: 32755359 [Abstract] [Full Text] [Related]
7. Anodal transcranial direct current stimulation enhances time to task failure of a submaximal contraction of elbow flexors without changing corticospinal excitability. Abdelmoula A, Baudry S, Duchateau J. Neuroscience; 2016 May 13; 322():94-103. PubMed ID: 26892298 [Abstract] [Full Text] [Related]
8. Fatiguing intermittent lower limb exercise influences corticospinal and corticocortical excitability in the nonexercised upper limb. Takahashi K, Maruyama A, Hirakoba K, Maeda M, Etoh S, Kawahira K, Rothwell JC. Brain Stimul; 2011 Apr 13; 4(2):90-6. PubMed ID: 21511209 [Abstract] [Full Text] [Related]
9. Modulation of specific inhibitory networks in fatigued locomotor muscles of healthy males. Goodall S, Howatson G, Thomas K. Exp Brain Res; 2018 Feb 13; 236(2):463-473. PubMed ID: 29214392 [Abstract] [Full Text] [Related]
10. Effect of hypohydration on peripheral and corticospinal excitability and voluntary activation. Bowtell JL, Avenell G, Hunter SP, Mileva KN. PLoS One; 2013 Feb 13; 8(10):e77004. PubMed ID: 24098574 [Abstract] [Full Text] [Related]
11. Use of motor cortex stimulation to measure simultaneously the changes in dynamic muscle properties and voluntary activation in human muscles. Todd G, Taylor JL, Butler JE, Martin PG, Gorman RB, Gandevia SC. J Appl Physiol (1985); 2007 May 13; 102(5):1756-66. PubMed ID: 17218428 [Abstract] [Full Text] [Related]
12. Central excitability does not limit postfatigue voluntary activation of quadriceps femoris. Kalmar JM, Cafarelli E. J Appl Physiol (1985); 2006 Jun 13; 100(6):1757-64. PubMed ID: 16424071 [Abstract] [Full Text] [Related]
13. Facilitation of cortically evoked potentials with motor imagery during post-exercise depression of corticospinal excitability. Pitcher JB, Robertson AL, Clover EC, Jaberzadeh S. Exp Brain Res; 2005 Jan 13; 160(4):409-17. PubMed ID: 15502993 [Abstract] [Full Text] [Related]
14. Corticospinal-evoked responses in lower limb muscles during voluntary contractions at varying strengths. Oya T, Hoffman BW, Cresswell AG. J Appl Physiol (1985); 2008 Nov 13; 105(5):1527-32. PubMed ID: 18787089 [Abstract] [Full Text] [Related]
16. Task-specific depression of the soleus H-reflex after cocontraction training of antagonistic ankle muscles. Perez MA, Lundbye-Jensen J, Nielsen JB. J Neurophysiol; 2007 Dec 01; 98(6):3677-87. PubMed ID: 17942616 [Abstract] [Full Text] [Related]
17. The loss of muscle force production after muscle stretching is not accompanied by altered corticospinal excitability. Pulverenti TS, Trajano GS, Kirk BJC, Blazevich AJ. Eur J Appl Physiol; 2019 Oct 01; 119(10):2287-2299. PubMed ID: 31456049 [Abstract] [Full Text] [Related]
18. Group III/IV locomotor muscle afferents alter motor cortical and corticospinal excitability and promote central fatigue during cycling exercise. Sidhu SK, Weavil JC, Mangum TS, Jessop JE, Richardson RS, Morgan DE, Amann M. Clin Neurophysiol; 2017 Jan 01; 128(1):44-55. PubMed ID: 27866119 [Abstract] [Full Text] [Related]
19. Effects of fatiguing unilateral plantar flexions on corticospinal and transcallosal inhibition in the primary motor hand area. Matsuura R, Ogata T. J Physiol Anthropol; 2015 Feb 24; 34(1):4. PubMed ID: 25857538 [Abstract] [Full Text] [Related]
20. The response to paired motor cortical stimuli is abolished at a spinal level during human muscle fatigue. McNeil CJ, Martin PG, Gandevia SC, Taylor JL. J Physiol; 2009 Dec 01; 587(Pt 23):5601-12. PubMed ID: 19805743 [Abstract] [Full Text] [Related] Page: [Next] [New Search]