These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Manipulating the expression rate and enantioselectivity of an epoxide hydrolase by using directed evolution. Reetz MT, Zheng H. Chembiochem; 2011 Jul 04; 12(10):1529-35. PubMed ID: 21567703 [Abstract] [Full Text] [Related]
4. Shedding light on the efficacy of laboratory evolution based on iterative saturation mutagenesis. Reetz MT, Kahakeaw D, Sanchis J. Mol Biosyst; 2009 Feb 04; 5(2):115-22. PubMed ID: 19156255 [Abstract] [Full Text] [Related]
5. Cloning of an epoxide hydrolase-encoding gene from Aspergillus niger M200, overexpression in E. coli, and modification of activity and enantioselectivity of the enzyme by protein engineering. Kotik M, Stepánek V, Kyslík P, Maresová H. J Biotechnol; 2007 Oct 15; 132(1):8-15. PubMed ID: 17875334 [Abstract] [Full Text] [Related]
6. Many pathways in laboratory evolution can lead to improved enzymes: how to escape from local minima. Gumulya Y, Sanchis J, Reetz MT. Chembiochem; 2012 May 07; 13(7):1060-6. PubMed ID: 22522601 [Abstract] [Full Text] [Related]
7. Enhancing the thermal robustness of an enzyme by directed evolution: least favorable starting points and inferior mutants can map superior evolutionary pathways. Gumulya Y, Reetz MT. Chembiochem; 2011 Nov 04; 12(16):2502-10. PubMed ID: 21913300 [Abstract] [Full Text] [Related]
9. Laboratory evolution of an epoxide hydrolase - towards an enantioconvergent biocatalyst. Kotik M, Archelas A, Faměrová V, Oubrechtová P, Křen V. J Biotechnol; 2011 Oct 20; 156(1):1-10. PubMed ID: 21854816 [Abstract] [Full Text] [Related]
10. Directed evolution of an enantioselective epoxide hydrolase: uncovering the source of enantioselectivity at each evolutionary stage. Reetz MT, Bocola M, Wang LW, Sanchis J, Cronin A, Arand M, Zou J, Archelas A, Bottalla AL, Naworyta A, Mowbray SL. J Am Chem Soc; 2009 Jun 03; 131(21):7334-43. PubMed ID: 19469578 [Abstract] [Full Text] [Related]
11. Enhancing the enantioselectivity of an epoxide hydrolase by directed evolution. Reetz MT, Torre C, Eipper A, Lohmer R, Hermes M, Brunner B, Maichele A, Bocola M, Arand M, Cronin A, Genzel Y, Archelas A, Furstoss R. Org Lett; 2004 Jan 22; 6(2):177-80. PubMed ID: 14723522 [Abstract] [Full Text] [Related]
12. A machine learning approach for reliable prediction of amino acid interactions and its application in the directed evolution of enantioselective enzymes. Cadet F, Fontaine N, Li G, Sanchis J, Ng Fuk Chong M, Pandjaitan R, Vetrivel I, Offmann B, Reetz MT. Sci Rep; 2018 Nov 13; 8(1):16757. PubMed ID: 30425279 [Abstract] [Full Text] [Related]
14. Cloning, expression, purification, and characterization of a novel epoxide hydrolase from Aspergillus niger SQ-6. Liu Y, Wu S, Wang J, Yang L, Sun W. Protein Expr Purif; 2007 Jun 13; 53(2):239-46. PubMed ID: 17317214 [Abstract] [Full Text] [Related]
15. Protein engineering of α/β-hydrolase fold enzymes. Jochens H, Hesseler M, Stiba K, Padhi SK, Kazlauskas RJ, Bornscheuer UT. Chembiochem; 2011 Jul 04; 12(10):1508-17. PubMed ID: 21506229 [Abstract] [Full Text] [Related]