These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
352 related items for PubMed ID: 22436868
1. Comparison of central corneal thickness using optical low-coherence reflectometry and spectral-domain optical coherence tomography. López-Miguel A, Correa-Pérez ME, Miranda-Anta S, Iglesias-Cortiñas D, Coco-Martín MB, Maldonado MJ. J Cataract Refract Surg; 2012 May; 38(5):758-64. PubMed ID: 22436868 [Abstract] [Full Text] [Related]
2. Comparative study of central corneal thickness measurement with slit-lamp optical coherence tomography and visante optical coherence tomography. Li H, Leung CK, Wong L, Cheung CY, Pang CP, Weinreb RN, Lam DS. Ophthalmology; 2008 May; 115(5):796-801.e2. PubMed ID: 17916376 [Abstract] [Full Text] [Related]
3. Comparison of central corneal thickness measurements using optical low-coherence reflectometry, Fourier domain optical coherence tomography, and Scheimpflug camera. Gonul S, Koktekir BE, Bakbak B, Gedik S. Arq Bras Oftalmol; 2014 May; 77(6):345-50. PubMed ID: 25627178 [Abstract] [Full Text] [Related]
4. Dependability of posterior-segment spectral domain optical coherence tomography for measuring central corneal thickness. Correa-Pérez ME, Olmo N, López-Miguel A, Fernández I, Coco-Martín MB, Maldonado MJ. Cornea; 2014 Nov; 33(11):1219-24. PubMed ID: 25211358 [Abstract] [Full Text] [Related]
5. [Reproducibility of the measurement of central corneal thickness in healthy subjects obtained with the optical low coherence reflectometry pachymeter and comparison with the ultrasonic pachymetry]. Garza-Leon M, Plancarte-Lozano E, Valle-Penella AD, Guzmán-Martínez ML, Villarreal-González A. Cir Cir; 2018 Nov; 86(1):50-55. PubMed ID: 29681640 [Abstract] [Full Text] [Related]
6. A Comparison between Scheimpflug imaging and optical coherence tomography in measuring corneal thickness. Huang J, Ding X, Savini G, Pan C, Feng Y, Cheng D, Hua Y, Hu X, Wang Q. Ophthalmology; 2013 Oct; 120(10):1951-8. PubMed ID: 23672973 [Abstract] [Full Text] [Related]
7. Measurement of central corneal thickness by high-resolution Scheimpflug imaging, Fourier-domain optical coherence tomography and ultrasound pachymetry. Chen S, Huang J, Wen D, Chen W, Huang D, Wang Q. Acta Ophthalmol; 2012 Aug; 90(5):449-55. PubMed ID: 20560892 [Abstract] [Full Text] [Related]
8. Precision of high definition spectral-domain optical coherence tomography for measuring central corneal thickness. Correa-Pérez ME, López-Miguel A, Miranda-Anta S, Iglesias-Cortiñas D, Alió JL, Maldonado MJ. Invest Ophthalmol Vis Sci; 2012 Apr 06; 53(4):1752-7. PubMed ID: 22395881 [Abstract] [Full Text] [Related]
9. Anterior ocular biometry using 3-dimensional optical coherence tomography. Fukuda S, Kawana K, Yasuno Y, Oshika T. Ophthalmology; 2009 May 06; 116(5):882-9. PubMed ID: 19410946 [Abstract] [Full Text] [Related]
10. Scheimpflug-Placido topographer and optical low-coherence reflectometry biometer: repeatability and agreement. Chen W, McAlinden C, Pesudovs K, Wang Q, Lu F, Feng Y, Chen J, Huang J. J Cataract Refract Surg; 2012 Sep 06; 38(9):1626-32. PubMed ID: 22763002 [Abstract] [Full Text] [Related]
11. Validation of optical low coherence reflectometry retinal and choroidal biometry. Read SA, Collins MJ, Alonso-Caneiro D. Optom Vis Sci; 2011 Jul 06; 88(7):855-63. PubMed ID: 21516051 [Abstract] [Full Text] [Related]
12. Intraobserver repeatability and interobserver reproducibility of corneal measurements in normal eyes using an optical coherence tomography-Placido disk device. Shah JM, Han D, Htoon HM, Mehta JS. J Cataract Refract Surg; 2015 Feb 06; 41(2):372-81. PubMed ID: 25661131 [Abstract] [Full Text] [Related]
13. Repeatability and agreement in optical biometry of a new swept-source optical coherence tomography-based biometer versus partial coherence interferometry and optical low-coherence reflectometry. Kunert KS, Peter M, Blum M, Haigis W, Sekundo W, Schütze J, Büehren T. J Cataract Refract Surg; 2016 Jan 06; 42(1):76-83. PubMed ID: 26948781 [Abstract] [Full Text] [Related]
14. Central corneal thickness measurements with different imaging devices and ultrasound pachymetry. Tai LY, Khaw KW, Ng CM, Subrayan V. Cornea; 2013 Jun 06; 32(6):766-71. PubMed ID: 23095499 [Abstract] [Full Text] [Related]
15. Repeatability and reproducibility of optical biometry implemented in a new optical coherence tomographer and comparison with a optical low-coherence reflectometer. Kanclerz P, Hoffer KJ, Rozema JJ, Przewłócka K, Savini G. J Cataract Refract Surg; 2019 Nov 06; 45(11):1619-1624. PubMed ID: 31706516 [Abstract] [Full Text] [Related]
16. Precision of a new Scheimpflug and Placido-disk analyzer in measuring corneal thickness and agreement with ultrasound pachymetry. Huang J, Savini G, Hu L, Hoffer KJ, Lu W, Feng Y, Yang F, Hu X, Wang Q. J Cataract Refract Surg; 2013 Feb 06; 39(2):219-24. PubMed ID: 23218819 [Abstract] [Full Text] [Related]
17. Reproducibility of the measurement of central corneal thickness in healthy subjects obtained with the optical low coherence reflectometry pachymeter and comparison with the ultrasonic pachymetry. Garza-Leon M, Plancarte-Lozano E, Valle-Penella AD, Guzmán-Martínez ML, Villarreal-González A. Cir Cir; 2019 Feb 06; 86(1):44-49. PubMed ID: 30951042 [Abstract] [Full Text] [Related]
19. Comparison of fourier-domain and time-domain optical coherence tomography for assessment of corneal thickness and intersession repeatability. Prakash G, Agarwal A, Jacob S, Kumar DA, Agarwal A, Banerjee R. Am J Ophthalmol; 2009 Aug 06; 148(2):282-290.e2. PubMed ID: 19442961 [Abstract] [Full Text] [Related]