These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Stem cell differentiation on electrospun nanofibrous substrates for vascular tissue engineering. Jia L, Prabhakaran MP, Qin X, Ramakrishna S. Mater Sci Eng C Mater Biol Appl; 2013 Dec 01; 33(8):4640-50. PubMed ID: 24094171 [Abstract] [Full Text] [Related]
23. Fabrication and endothelialization of collagen-blended biodegradable polymer nanofibers: potential vascular graft for blood vessel tissue engineering. He W, Yong T, Teo WE, Ma Z, Ramakrishna S. Tissue Eng; 2005 Dec 01; 11(9-10):1574-88. PubMed ID: 16259611 [Abstract] [Full Text] [Related]
24. Biocomposite nanofibrous strategies for the controlled release of biomolecules for skin tissue regeneration. Gandhimathi C, Venugopal JR, Bhaarathy V, Ramakrishna S, Kumar SD. Int J Nanomedicine; 2014 Dec 01; 9():4709-22. PubMed ID: 25336949 [Abstract] [Full Text] [Related]
25. Electrospun nanofiber fabrication as synthetic extracellular matrix and its potential for vascular tissue engineering. Xu C, Inai R, Kotaki M, Ramakrishna S. Tissue Eng; 2004 Dec 01; 10(7-8):1160-8. PubMed ID: 15363172 [Abstract] [Full Text] [Related]
26. Aligned PLLA nanofibrous scaffolds coated with graphene oxide for promoting neural cell growth. Zhang K, Zheng H, Liang S, Gao C. Acta Biomater; 2016 Jun 01; 37():131-42. PubMed ID: 27063493 [Abstract] [Full Text] [Related]
27. Electrospun nanostructured scaffolds for bone tissue engineering. Prabhakaran MP, Venugopal J, Ramakrishna S. Acta Biomater; 2009 Oct 01; 5(8):2884-93. PubMed ID: 19447211 [Abstract] [Full Text] [Related]
28. Effective combination of aligned nanocomposite nanofibers and human unrestricted somatic stem cells for bone tissue engineering. Bakhshandeh B, Soleimani M, Ghaemi N, Shabani I. Acta Pharmacol Sin; 2011 May 01; 32(5):626-36. PubMed ID: 21516135 [Abstract] [Full Text] [Related]
29. Hierarchical electrospun tendon-ligament bioinspired scaffolds induce changes in fibroblasts morphology under static and dynamic conditions. Sensini A, Cristofolini L, Zucchelli A, Focarete ML, Gualandi C, DE Mori A, Kao AP, Roldo M, Blunn G, Tozzi G. J Microsc; 2020 Mar 01; 277(3):160-169. PubMed ID: 31339556 [Abstract] [Full Text] [Related]
30. Heparin/collagen encapsulating nerve growth factor multilayers coated aligned PLLA nanofibrous scaffolds for nerve tissue engineering. Zhang K, Huang D, Yan Z, Wang C. J Biomed Mater Res A; 2017 Jul 01; 105(7):1900-1910. PubMed ID: 28256802 [Abstract] [Full Text] [Related]
31. Silk fibroin/poly(L-lactic acid-co-ε-caprolactone) electrospun nanofibrous scaffolds exert a protective effect following myocardial infarction. Du M, Gu J, Wang J, Xue Y, Ma Y, Mo X, Xue S. Exp Ther Med; 2019 May 01; 17(5):3989-3998. PubMed ID: 30988780 [Abstract] [Full Text] [Related]
32. Biologically improved nanofibrous scaffolds for cardiac tissue engineering. Bhaarathy V, Venugopal J, Gandhimathi C, Ponpandian N, Mangalaraj D, Ramakrishna S. Mater Sci Eng C Mater Biol Appl; 2014 Nov 01; 44():268-77. PubMed ID: 25280706 [Abstract] [Full Text] [Related]
33. Human Amniotic Membrane with Aligned Electrospun Fiber as Scaffold for Aligned Tissue Regeneration. Hasmad H, Yusof MR, Mohd Razi ZR, Hj Idrus RB, Chowdhury SR. Tissue Eng Part C Methods; 2018 Jun 01; 24(6):368-378. PubMed ID: 29690856 [Abstract] [Full Text] [Related]
34. Incorporation and release of dual growth factors for nerve tissue engineering using nanofibrous bicomponent scaffolds. Liu C, Wang C, Zhao Q, Li X, Xu F, Yao X, Wang M. Biomed Mater; 2018 May 04; 13(4):044107. PubMed ID: 29537390 [Abstract] [Full Text] [Related]
35. Peripheral nerve regeneration using composite poly(lactic acid-caprolactone)/nerve growth factor conduits prepared by coaxial electrospinning. Liu JJ, Wang CY, Wang JG, Ruan HJ, Fan CY. J Biomed Mater Res A; 2011 Jan 04; 96(1):13-20. PubMed ID: 20949481 [Abstract] [Full Text] [Related]
36. Poly-3-hydroxybutyrate-co-3-hydroxyvalerate containing scaffolds and their integration with osteoblasts as a model for bone tissue engineering. Zhang S, Prabhakaran MP, Qin X, Ramakrishna S. J Biomater Appl; 2015 May 04; 29(10):1394-406. PubMed ID: 25592285 [Abstract] [Full Text] [Related]
37. Fabrication, characterization and cellular compatibility of poly(hydroxy alkanoate) composite nanofibrous scaffolds for nerve tissue engineering. Masaeli E, Morshed M, Nasr-Esfahani MH, Sadri S, Hilderink J, van Apeldoorn A, van Blitterswijk CA, Moroni L. PLoS One; 2013 May 04; 8(2):e57157. PubMed ID: 23468923 [Abstract] [Full Text] [Related]
38. Layered chitosan-collagen hydrogel/aligned PLLA nanofiber construct for flexor tendon regeneration. Deepthi S, Nivedhitha Sundaram M, Deepti Kadavan J, Jayakumar R. Carbohydr Polym; 2016 Nov 20; 153():492-500. PubMed ID: 27561521 [Abstract] [Full Text] [Related]
39. Fabrication of electrospun thermoplastic polyurethane blended poly (l-lactide-co-e-caprolactone) microyarn scaffolds for engineering of female pelvic-floor tissue. Hou M, Wu Q, Dai M, Xu P, Gu C, Jia X, Feng J, Mo X. Biomed Mater; 2014 Dec 29; 10(1):015005. PubMed ID: 25546879 [Abstract] [Full Text] [Related]
40. Design and characterization of biodegradable multi layered electrospun nanofibers for corneal tissue engineering applications. Arabpour Z, Baradaran-Rafii A, Bakhshaiesh NL, Ai J, Ebrahimi-Barough S, Esmaeili Malekabadi H, Nazeri N, Vaez A, Salehi M, Sefat F, Ostad SN. J Biomed Mater Res A; 2019 Oct 29; 107(10):2340-2349. PubMed ID: 31161710 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]