These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


257 related items for PubMed ID: 22439623

  • 1. Detection of membrane-binding proteins by surface plasmon resonance with an all-aqueous amplification scheme.
    Liu Y, Cheng Q.
    Anal Chem; 2012 Apr 03; 84(7):3179-86. PubMed ID: 22439623
    [Abstract] [Full Text] [Related]

  • 2. Highly sensitive detection of protein toxins by surface plasmon resonance with biotinylation-based inline atom transfer radical polymerization amplification.
    Liu Y, Dong Y, Jauw J, Linman MJ, Cheng Q.
    Anal Chem; 2010 May 01; 82(9):3679-85. PubMed ID: 20384298
    [Abstract] [Full Text] [Related]

  • 3. Ultrasensitive Detection of Bacterial Protein Toxins on Patterned Microarray via Surface Plasmon Resonance Imaging with Signal Amplification by Conjugate Nanoparticle Clusters.
    Lambert A, Yang Z, Cheng W, Lu Z, Liu Y, Cheng Q.
    ACS Sens; 2018 Sep 28; 3(9):1639-1646. PubMed ID: 30084634
    [Abstract] [Full Text] [Related]

  • 4. Nanoscale glassification of gold substrates for surface plasmon resonance analysis of protein toxins with supported lipid membranes.
    Phillips KS, Han JH, Martinez M, Wang Z, Carter D, Cheng Q.
    Anal Chem; 2006 Jan 15; 78(2):596-603. PubMed ID: 16408945
    [Abstract] [Full Text] [Related]

  • 5. Regenerable tethered bilayer lipid membrane arrays for multiplexed label-free analysis of lipid-protein interactions on poly(dimethylsiloxane) microchips using SPR imaging.
    Taylor JD, Linman MJ, Wilkop T, Cheng Q.
    Anal Chem; 2009 Feb 01; 81(3):1146-53. PubMed ID: 19178341
    [Abstract] [Full Text] [Related]

  • 6. Single nanoparticle tracking-based detection of membrane receptor-ligand interactions.
    Yang YH, Nam JM.
    Anal Chem; 2009 Apr 01; 81(7):2564-8. PubMed ID: 19228043
    [Abstract] [Full Text] [Related]

  • 7. Nanodiscs for immobilization of lipid bilayers and membrane receptors: kinetic analysis of cholera toxin binding to a glycolipid receptor.
    Borch J, Torta F, Sligar SG, Roepstorff P.
    Anal Chem; 2008 Aug 15; 80(16):6245-52. PubMed ID: 18616345
    [Abstract] [Full Text] [Related]

  • 8. Surface plasmon resonance imaging analysis of protein-receptor binding in supported membrane arrays on gold substrates with calcinated silicate films.
    Phillips KS, Wilkop T, Wu JJ, Al-Kaysi RO, Cheng Q.
    J Am Chem Soc; 2006 Aug 02; 128(30):9590-1. PubMed ID: 16866487
    [Abstract] [Full Text] [Related]

  • 9. Development of a "membrane cloaking" method for amperometric enzyme immunoassay and surface plasmon resonance analysis of proteins in serum samples.
    Phillips KS, Han JH, Cheng Q.
    Anal Chem; 2007 Feb 01; 79(3):899-907. PubMed ID: 17263314
    [Abstract] [Full Text] [Related]

  • 10. Microfluidic fabrication of addressable tethered lipid bilayer arrays and optimization using SPR with silane-derivatized nanoglassy substrates.
    Taylor JD, Phillips KS, Cheng Q.
    Lab Chip; 2007 Jul 01; 7(7):927-30. PubMed ID: 17594015
    [Abstract] [Full Text] [Related]

  • 11. Surface plasmon resonance enhanced real-time photoelectrochemical protein sensing by gold nanoparticle-decorated TiO₂ nanowires.
    Da P, Li W, Lin X, Wang Y, Tang J, Zheng G.
    Anal Chem; 2014 Jul 01; 86(13):6633-9. PubMed ID: 24915128
    [Abstract] [Full Text] [Related]

  • 12. Functionalization of poly(oligo(ethylene glycol) methacrylate) films on gold and Si/SiO2 for immobilization of proteins and cells: SPR and QCM studies.
    Lee BS, Chi YS, Lee KB, Kim YG, Choi IS.
    Biomacromolecules; 2007 Dec 01; 8(12):3922-9. PubMed ID: 18039000
    [Abstract] [Full Text] [Related]

  • 13. Surface plasmon resonance biosensors incorporating gold nanoparticles.
    Bedford EE, Spadavecchia J, Pradier CM, Gu FX.
    Macromol Biosci; 2012 Jun 01; 12(6):724-39. PubMed ID: 22416018
    [Abstract] [Full Text] [Related]

  • 14. Plasmon Coupling Enhanced Raman Scattering Nanobeacon for Single-Step, Ultrasensitive Detection of Cholera Toxin.
    Zhang CH, Liu LW, Liang P, Tang LJ, Yu RQ, Jiang JH.
    Anal Chem; 2016 Aug 02; 88(15):7447-52. PubMed ID: 27348262
    [Abstract] [Full Text] [Related]

  • 15. Localized surface plasmon resonance biosensor integrated with microfluidic chip.
    Huang C, Bonroy K, Reekmans G, Laureyn W, Verhaegen K, De Vlaminck I, Lagae L, Borghs G.
    Biomed Microdevices; 2009 Aug 02; 11(4):893-901. PubMed ID: 19353272
    [Abstract] [Full Text] [Related]

  • 16. Development of air-stable, supported membrane arrays with photolithography for study of phosphoinositide-protein interactions using surface plasmon resonance imaging.
    Wang Z, Wilkop T, Han JH, Dong Y, Linman MJ, Cheng Q.
    Anal Chem; 2008 Aug 15; 80(16):6397-404. PubMed ID: 18620431
    [Abstract] [Full Text] [Related]

  • 17. Ultrasensitive Plasmonic Platform for Label-Free Detection of Membrane-Associated Species.
    Bruzas I, Unser S, Yazdi S, Ringe E, Sagle L.
    Anal Chem; 2016 Aug 16; 88(16):7968-74. PubMed ID: 27436204
    [Abstract] [Full Text] [Related]

  • 18. SPR sensor chip for detection of small molecules using molecularly imprinted polymer with embedded gold nanoparticles.
    Matsui J, Akamatsu K, Hara N, Miyoshi D, Nawafune H, Tamaki K, Sugimoto N.
    Anal Chem; 2005 Jul 01; 77(13):4282-5. PubMed ID: 15987138
    [Abstract] [Full Text] [Related]

  • 19. Measurement of the binding of cholera toxin to GM1 gangliosides on solid supported lipid bilayer vesicles and inhibition by europium (III) chloride.
    Williams TL, Jenkins AT.
    J Am Chem Soc; 2008 May 21; 130(20):6438-43. PubMed ID: 18412339
    [Abstract] [Full Text] [Related]

  • 20. Multifunctional au nanoparticle dendrimer-based surface plasmon resonance biosensor and its application for improved insulin detection.
    Frasconi M, Tortolini C, Botrè F, Mazzei F.
    Anal Chem; 2010 Sep 01; 82(17):7335-42. PubMed ID: 20698498
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 13.