These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


173 related items for PubMed ID: 22443453

  • 21. Aqueous phase synthesis of Au-Ag core-shell nanocrystals with tunable shapes and their optical and catalytic properties.
    Tsao YC, Rej S, Chiu CY, Huang MH.
    J Am Chem Soc; 2014 Jan 08; 136(1):396-404. PubMed ID: 24341355
    [Abstract] [Full Text] [Related]

  • 22. Fabrication of Au@Ag core-shell nanoparticles using polyelectrolyte multilayers as nanoreactors.
    Zhang X, Wang H, Su Z.
    Langmuir; 2012 Nov 06; 28(44):15705-12. PubMed ID: 23075212
    [Abstract] [Full Text] [Related]

  • 23. Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering.
    Driskell JD, Lipert RJ, Porter MD.
    J Phys Chem B; 2006 Sep 07; 110(35):17444-51. PubMed ID: 16942083
    [Abstract] [Full Text] [Related]

  • 24. Metallic-like stoichiometric copper sulfide nanocrystals: phase- and shape-selective synthesis, near-infrared surface plasmon resonance properties, and their modeling.
    Xie Y, Carbone L, Nobile C, Grillo V, D'Agostino S, Della Sala F, Giannini C, Altamura D, Oelsner C, Kryschi C, Cozzoli PD.
    ACS Nano; 2013 Aug 27; 7(8):7352-69. PubMed ID: 23859591
    [Abstract] [Full Text] [Related]

  • 25. In situ growth of hollow gold-silver nanoshells within porous silica offers tunable plasmonic extinctions and enhanced colloidal stability.
    Li CH, Jamison AC, Rittikulsittichai S, Lee TC, Lee TR.
    ACS Appl Mater Interfaces; 2014 Nov 26; 6(22):19943-50. PubMed ID: 25321928
    [Abstract] [Full Text] [Related]

  • 26. Optical absorption analysis and optimization of gold nanoshells.
    Tuersun P, Han X.
    Appl Opt; 2013 Feb 20; 52(6):1325-9. PubMed ID: 23435006
    [Abstract] [Full Text] [Related]

  • 27. Tuning the observability of surface plasmon in silica-gold raspberry shaped nanoparticles using cuprous oxide shell.
    Tyagi H, Mohapatra J, Kushwaha A, Aslam M.
    ACS Appl Mater Interfaces; 2013 Dec 11; 5(23):12268-74. PubMed ID: 24237115
    [Abstract] [Full Text] [Related]

  • 28. Size tunable Au@Ag core-shell nanoparticles: synthesis and surface-enhanced Raman scattering properties.
    Samal AK, Polavarapu L, Rodal-Cedeira S, Liz-Marzán LM, Pérez-Juste J, Pastoriza-Santos I.
    Langmuir; 2013 Dec 03; 29(48):15076-82. PubMed ID: 24261458
    [Abstract] [Full Text] [Related]

  • 29. Expanding micelle nanolithography to the self-assembly of multicomponent core-shell nanoparticles.
    Mbenkum BN, Díaz-Ortiz A, Gu L, van Aken PA, Schütz G.
    J Am Chem Soc; 2010 Aug 11; 132(31):10671-3. PubMed ID: 20681695
    [Abstract] [Full Text] [Related]

  • 30. Enhanced Third-Harmonic Generation from a Metal/Semiconductor Core/Shell Hybrid Nanostructure.
    Bar-Elli O, Grinvald E, Meir N, Neeman L, Oron D.
    ACS Nano; 2015 Aug 25; 9(8):8064-9. PubMed ID: 26197215
    [Abstract] [Full Text] [Related]

  • 31. Tailored core-shell-shell nanostructures: sandwiching gold nanoparticles between silica cores and tunable silica shells.
    Shi YL, Asefa T.
    Langmuir; 2007 Aug 28; 23(18):9455-62. PubMed ID: 17661498
    [Abstract] [Full Text] [Related]

  • 32. Plasmon-enhanced depolarization of reflected light from arrays of nanoparticle dimers.
    Walsh GF, Forestiere C, Dal Negro L.
    Opt Express; 2011 Oct 10; 19(21):21081-90. PubMed ID: 21997116
    [Abstract] [Full Text] [Related]

  • 33. Double hydrophilic block copolymer monolayer protected hybrid gold nanoparticles and their shell cross-linking.
    Luo S, Xu J, Zhang Y, Liu S, Wu C.
    J Phys Chem B; 2005 Dec 01; 109(47):22159-66. PubMed ID: 16853883
    [Abstract] [Full Text] [Related]

  • 34. Enhanced photoabsorption efficiency of incomplete nanoshells.
    Venkatapathi M, Dastidar SG, Bharath P, Roy A, Ghosh A.
    Opt Lett; 2013 Sep 01; 38(17):3275-8. PubMed ID: 23988933
    [Abstract] [Full Text] [Related]

  • 35. Morphology-Controlled Synthesis of Hybrid Nanocrystals via a Selenium-Mediated Strategy with Ligand Shielding Effect: The Case of Dual Plasmonic Au-Cu2-xSe.
    Zou Y, Sun C, Gong W, Yang X, Huang X, Yang T, Lu W, Jiang J.
    ACS Nano; 2017 Apr 25; 11(4):3776-3785. PubMed ID: 28394555
    [Abstract] [Full Text] [Related]

  • 36. Optical and structural characterization of CdS/ZnS and CdS:Cu(2+) /ZnS core-shell nanoparticles.
    Murugadoss G, Kumar MR.
    Luminescence; 2014 Sep 25; 29(6):663-8. PubMed ID: 24254232
    [Abstract] [Full Text] [Related]

  • 37. pH- and glucose-responsive core-shell hybrid nanoparticles with controllable metal-enhanced fluorescence effects.
    Zhang J, Ma N, Tang F, Cui Q, He F, Li L.
    ACS Appl Mater Interfaces; 2012 Mar 25; 4(3):1747-51. PubMed ID: 22324454
    [Abstract] [Full Text] [Related]

  • 38. Fabrication of nanoscale heterostructures comprised of graphene-encapsulated gold nanoparticles and semiconducting quantum dots for photocatalysis.
    Li Y, Chopra N.
    Phys Chem Chem Phys; 2015 May 21; 17(19):12881-93. PubMed ID: 25907300
    [Abstract] [Full Text] [Related]

  • 39. Switching Plasmons: Gold Nanorod-Copper Chalcogenide Core-Shell Nanoparticle Clusters with Selectable Metal/Semiconductor NIR Plasmon Resonances.
    Muhammed MA, Döblinger M, Rodríguez-Fernández J.
    J Am Chem Soc; 2015 Sep 16; 137(36):11666-77. PubMed ID: 26332445
    [Abstract] [Full Text] [Related]

  • 40. Au nanocrystal-directed growth of Au-Cu(2)O core-shell heterostructures with precise morphological control.
    Kuo CH, Hua TE, Huang MH.
    J Am Chem Soc; 2009 Dec 16; 131(49):17871-8. PubMed ID: 19919066
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 9.