These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


596 related items for PubMed ID: 22444607

  • 1. Microbial ecosystem and methanogenesis in ruminants.
    Morgavi DP, Forano E, Martin C, Newbold CJ.
    Animal; 2010 Jul; 4(7):1024-36. PubMed ID: 22444607
    [Abstract] [Full Text] [Related]

  • 2. The use of direct-fed microbials for mitigation of ruminant methane emissions: a review.
    Jeyanathan J, Martin C, Morgavi DP.
    Animal; 2014 Feb; 8(2):250-61. PubMed ID: 24274095
    [Abstract] [Full Text] [Related]

  • 3. A new perspective on the use of plant secondary metabolites to inhibit methanogenesis in the rumen.
    Patra AK, Saxena J.
    Phytochemistry; 2010 Aug; 71(11-12):1198-222. PubMed ID: 20570294
    [Abstract] [Full Text] [Related]

  • 4. [Methanogens and manipulation of methane production in the rumen].
    Guo YQ, Hu WL, Liu JX.
    Wei Sheng Wu Xue Bao; 2005 Feb; 45(1):145-8. PubMed ID: 15847184
    [Abstract] [Full Text] [Related]

  • 5. Rumen protozoa and methanogenesis: not a simple cause-effect relationship.
    Morgavi DP, Martin C, Jouany JP, Ranilla MJ.
    Br J Nutr; 2012 Feb; 107(3):388-97. PubMed ID: 21762544
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Changes in the Rumen Microbiota of Cows in Response to Dietary Supplementation with Nitrate, Linseed, and Saponin Alone or in Combination.
    Popova M, Guyader J, Silberberg M, Seradj AR, Saro C, Bernard A, Gérard C, Martin C, Morgavi DP.
    Appl Environ Microbiol; 2019 Feb 15; 85(4):. PubMed ID: 30504215
    [Abstract] [Full Text] [Related]

  • 8. Genome sequencing of rumen bacteria and archaea and its application to methane mitigation strategies.
    Leahy SC, Kelly WJ, Ronimus RS, Wedlock N, Altermann E, Attwood GT.
    Animal; 2013 Jun 15; 7 Suppl 2():235-43. PubMed ID: 23739466
    [Abstract] [Full Text] [Related]

  • 9. The effect and mode of action of saponins on the microbial populations and fermentation in the rumen and ruminant production.
    Patra AK, Saxena J.
    Nutr Res Rev; 2009 Dec 15; 22(2):204-19. PubMed ID: 20003589
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Effect of the addition of fumarate on methane production by ruminal microorganisms in vitro.
    Asanuma N, Iwamoto M, Hino T.
    J Dairy Sci; 1999 Apr 15; 82(4):780-7. PubMed ID: 10212465
    [Abstract] [Full Text] [Related]

  • 12. Application of 3-nitrooxypropanol and canola oil to mitigate enteric methane emissions of beef cattle results in distinctly different effects on the rumen microbial community.
    Gruninger RJ, Zhang XM, Smith ML, Kung L, Vyas D, McGinn SM, Kindermann M, Wang M, Tan ZL, Beauchemin KA.
    Anim Microbiome; 2022 May 31; 4(1):35. PubMed ID: 35642048
    [Abstract] [Full Text] [Related]

  • 13. Diverse hydrogen production and consumption pathways influence methane production in ruminants.
    Greening C, Geier R, Wang C, Woods LC, Morales SE, McDonald MJ, Rushton-Green R, Morgan XC, Koike S, Leahy SC, Kelly WJ, Cann I, Attwood GT, Cook GM, Mackie RI.
    ISME J; 2019 Oct 31; 13(10):2617-2632. PubMed ID: 31243332
    [Abstract] [Full Text] [Related]

  • 14. Symposium review: Understanding the role of the rumen microbiome in enteric methane mitigation and productivity in dairy cows.
    Pitta D, Indugu N, Narayan K, Hennessy M.
    J Dairy Sci; 2022 Oct 31; 105(10):8569-8585. PubMed ID: 35346473
    [Abstract] [Full Text] [Related]

  • 15. Effect of progressive inoculation of fauna-free sheep with holotrich protozoa and total-fauna on rumen fermentation, microbial diversity and methane emissions.
    Belanche A, de la Fuente G, Newbold CJ.
    FEMS Microbiol Ecol; 2015 Mar 31; 91(3):. PubMed ID: 25764558
    [Abstract] [Full Text] [Related]

  • 16. Chemical markers for rumen methanogens and methanogenesis.
    McCartney CA, Bull ID, Dewhurst RJ.
    Animal; 2013 Jun 31; 7 Suppl 2():409-17. PubMed ID: 23739482
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Ruminal methane production: Associated microorganisms and the potential of applying hydrogen-utilizing bacteria for mitigation.
    Lan W, Yang C.
    Sci Total Environ; 2019 Mar 01; 654():1270-1283. PubMed ID: 30841400
    [Abstract] [Full Text] [Related]

  • 19. RUMINANT NUTRITION SYMPOSIUM: Use of genomics and transcriptomics to identify strategies to lower ruminal methanogenesis.
    McAllister TA, Meale SJ, Valle E, Guan LL, Zhou M, Kelly WJ, Henderson G, Attwood GT, Janssen PH.
    J Anim Sci; 2015 Apr 01; 93(4):1431-49. PubMed ID: 26020166
    [Abstract] [Full Text] [Related]

  • 20. Distinct microbial hydrogen and reductant disposal pathways explain interbreed variations in ruminant methane yield.
    Li Q, Ma Z, Huo J, Zhang X, Wang R, Zhang S, Jiao J, Dong X, Janssen PH, Ungerfeld EM, Greening C, Tan Z, Wang M.
    ISME J; 2024 Jan 08; 18(1):. PubMed ID: 38365243
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 30.