These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
191 related items for PubMed ID: 22445847
1. Nanographene-based tyrosinase biosensor for rapid detection of bisphenol A. Wu L, Deng D, Jin J, Lu X, Chen J. Biosens Bioelectron; 2012 May 15; 35(1):193-199. PubMed ID: 22445847 [Abstract] [Full Text] [Related]
2. Sensitive amperometric biosensor for phenolic compounds based on graphene-silk peptide/tyrosinase composite nanointerface. Qu Y, Ma M, Wang Z, Zhan G, Li B, Wang X, Fang H, Zhang H, Li C. Biosens Bioelectron; 2013 Jun 15; 44():85-8. PubMed ID: 23395727 [Abstract] [Full Text] [Related]
3. Functional graphene-gold nano-composite fabricated electrochemical biosensor for direct and rapid detection of bisphenol A. Pan D, Gu Y, Lan H, Sun Y, Gao H. Anal Chim Acta; 2015 Jan 01; 853():297-302. PubMed ID: 25467472 [Abstract] [Full Text] [Related]
4. Tyrosinase-based biosensor for determination of bisphenol A in a flow-batch system. Kochana J, Wapiennik K, Kozak J, Knihnicki P, Pollap A, Woźniakiewicz M, Nowak J, Kościelniak P. Talanta; 2015 Nov 01; 144():163-70. PubMed ID: 26452806 [Abstract] [Full Text] [Related]
5. Amperometric biosensor based on tyrosinase immobilized onto multiwalled carbon nanotubes-cobalt phthalocyanine-silk fibroin film and its application to determine bisphenol A. Yin H, Zhou Y, Xu J, Ai S, Cui L, Zhu L. Anal Chim Acta; 2010 Feb 05; 659(1-2):144-50. PubMed ID: 20103117 [Abstract] [Full Text] [Related]
6. 3D metal-organic framework as highly efficient biosensing platform for ultrasensitive and rapid detection of bisphenol A. Wang X, Lu X, Wu L, Chen J. Biosens Bioelectron; 2015 Mar 15; 65():295-301. PubMed ID: 25461172 [Abstract] [Full Text] [Related]
7. Highly sensitive electrochemical biosensor for bisphenol A detection based on a diazonium-functionalized boron-doped diamond electrode modified with a multi-walled carbon nanotube-tyrosinase hybrid film. Zehani N, Fortgang P, Saddek Lachgar M, Baraket A, Arab M, Dzyadevych SV, Kherrat R, Jaffrezic-Renault N. Biosens Bioelectron; 2015 Dec 15; 74():830-5. PubMed ID: 26232678 [Abstract] [Full Text] [Related]
8. Tyrosinase nanocapsule based nano-biosensor for ultrasensitive and rapid detection of bisphenol A with excellent stability in different application scenarios. Wu L, Lu X, Niu K, Dhanjai, Chen J. Biosens Bioelectron; 2020 Oct 01; 165():112407. PubMed ID: 32729527 [Abstract] [Full Text] [Related]
9. [Determination of phenol in water by electrochemical tyrosinase biosensor based on ordered graphitized mesoporous carbon and evaluated by high performance liquid chromatography]. Wu L, Liu H, Li J, Fu X, Song Y. Se Pu; 2014 Dec 01; 32(12):1368-72. PubMed ID: 25902645 [Abstract] [Full Text] [Related]
10. A thionine-modified carbon paste amperometric biosensor for catechol and bisphenol A determination. Portaccio M, Di Tuoro D, Arduini F, Lepore M, Mita DG, Diano N, Mita L, Moscone D. Biosens Bioelectron; 2010 May 15; 25(9):2003-8. PubMed ID: 20176471 [Abstract] [Full Text] [Related]
11. Tyrosinase conjugated reduced graphene oxide based biointerface for bisphenol A sensor. Reza KK, Ali MA, Srivastava S, Agrawal VV, Biradar AM. Biosens Bioelectron; 2015 Dec 15; 74():644-51. PubMed ID: 26201981 [Abstract] [Full Text] [Related]
12. A highly sensitive electrochemical biosensor for phenol derivatives using a graphene oxide-modified tyrosinase electrode. Wang Y, Zhai F, Hasebe Y, Jia H, Zhang Z. Bioelectrochemistry; 2018 Aug 15; 122():174-182. PubMed ID: 29656242 [Abstract] [Full Text] [Related]
13. Enzymatic determination of BPA by means of tyrosinase immobilized on different carbon carriers. Mita DG, Attanasio A, Arduini F, Diano N, Grano V, Bencivenga U, Rossi S, Amine A, Moscone D. Biosens Bioelectron; 2007 Aug 30; 23(1):60-5. PubMed ID: 17467970 [Abstract] [Full Text] [Related]
14. Nanofibrous membrane based tyrosinase-biosensor for the detection of phenolic compounds. Arecchi A, Scampicchio M, Drusch S, Mannino S. Anal Chim Acta; 2010 Feb 05; 659(1-2):133-6. PubMed ID: 20103115 [Abstract] [Full Text] [Related]
15. Organic conjugated polymer nanoparticles enhanced tyrosinase electrochemical biosensor for selective, sensitive and rapid detection of bisphenol A. Su X, Wu L, Chen G, Zheng C, Shan B, Tian Y, Ma J, Gu C. Sci Total Environ; 2024 Nov 15; 951():175765. PubMed ID: 39209166 [Abstract] [Full Text] [Related]
16. 2D transition metal carbide MXene as a robust biosensing platform for enzyme immobilization and ultrasensitive detection of phenol. Wu L, Lu X, Dhanjai, Wu ZS, Dong Y, Wang X, Zheng S, Chen J. Biosens Bioelectron; 2018 Jun 01; 107():69-75. PubMed ID: 29448223 [Abstract] [Full Text] [Related]
17. Electrochemical biosensing platform based on amino acid ionic liquid functionalized graphene for ultrasensitive biosensing applications. Lu X, Wang X, Jin J, Zhang Q, Chen J. Biosens Bioelectron; 2014 Dec 15; 62():134-9. PubMed ID: 24997366 [Abstract] [Full Text] [Related]
18. Development of tyrosinase biosensor based on quantum dots/chitosan nanocomposite for detection of phenolic compounds. Han E, Yang Y, He Z, Cai J, Zhang X, Dong X. Anal Biochem; 2015 Oct 01; 486():102-6. PubMed ID: 26159737 [Abstract] [Full Text] [Related]
19. Development of a paper-type tyrosinase biosensor for detection of phenolic compounds. Şenyurt Ö, Eyidoğan F, Yılmaz R, Öz MT, Özalp VC, Arıca Y, Öktem HA. Biotechnol Appl Biochem; 2015 Oct 01; 62(1):132-6. PubMed ID: 24847915 [Abstract] [Full Text] [Related]
20. Development of a high analytical performance-tyrosinase biosensor based on a composite graphite-Teflon electrode modified with gold nanoparticles. Carralero V, Mena ML, Gonzalez-Cortés A, Yáñez-Sedeño P, Pingarrón JM. Biosens Bioelectron; 2006 Dec 15; 22(5):730-6. PubMed ID: 16569498 [Abstract] [Full Text] [Related] Page: [Next] [New Search]