These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


191 related items for PubMed ID: 22445847

  • 21. Passivation of black phosphorus as organic-phase enzyme platform for bisphenol A determination.
    Wu L, Meng Q, Xu Z, Cao Q, Xiao Y, Liu H, Han G, Wei S.
    Anal Chim Acta; 2020 Jan 25; 1095():197-203. PubMed ID: 31864622
    [Abstract] [Full Text] [Related]

  • 22. A novel tyrosinase biosensor based on hydroxyapatite-chitosan nanocomposite for the detection of phenolic compounds.
    Lu L, Zhang L, Zhang X, Huan S, Shen G, Yu R.
    Anal Chim Acta; 2010 Apr 30; 665(2):146-51. PubMed ID: 20417324
    [Abstract] [Full Text] [Related]

  • 23. Tyrosinase-immobilized CNT based biosensor for highly-sensitive detection of phenolic compounds.
    Wee Y, Park S, Kwon YH, Ju Y, Yeon KM, Kim J.
    Biosens Bioelectron; 2019 May 01; 132():279-285. PubMed ID: 30884314
    [Abstract] [Full Text] [Related]

  • 24. Immobilised tyrosinase-based biosensor for the detection of tea polyphenols.
    Abhijith KS, Kumar PV, Kumar MA, Thakur MS.
    Anal Bioanal Chem; 2007 Dec 01; 389(7-8):2227-34. PubMed ID: 17928999
    [Abstract] [Full Text] [Related]

  • 25. Laccase bioconjugate and multi-walled carbon nanotubes-based biosensor for bisphenol A analysis.
    Bravo I, Prata M, Torrinha Á, Delerue-Matos C, Lorenzo E, Morais S.
    Bioelectrochemistry; 2022 Apr 01; 144():108033. PubMed ID: 34922175
    [Abstract] [Full Text] [Related]

  • 26. A novel tyrosinase biosensor based on biofunctional ZnO nanorod microarrays on the nanocrystalline diamond electrode for detection of phenolic compounds.
    Zhao J, Wu D, Zhi J.
    Bioelectrochemistry; 2009 Apr 01; 75(1):44-9. PubMed ID: 19230793
    [Abstract] [Full Text] [Related]

  • 27. Development of an Innovative Biosensor Based on Graphene/PEDOT/Tyrosinase for the Detection of Phenolic Compounds in River Waters.
    Bounegru AV, Iticescu C, Georgescu LP, Apetrei C.
    Int J Mol Sci; 2024 Apr 17; 25(8):. PubMed ID: 38674004
    [Abstract] [Full Text] [Related]

  • 28. Comparative study of graphene nanosheet- and multiwall carbon nanotube-based electrochemical sensor for the sensitive detection of cadmium.
    Wu L, Fu X, Liu H, Li J, Song Y.
    Anal Chim Acta; 2014 Dec 03; 851():43-8. PubMed ID: 25440663
    [Abstract] [Full Text] [Related]

  • 29. Fabrication of a carbon fiber paper as the electrode and its application toward developing a sensitive unmediated amperometric biosensor.
    Yuan CJ, Wang CL, Wu TY, Hwang KC, Chao WC.
    Biosens Bioelectron; 2011 Feb 15; 26(6):2858-63. PubMed ID: 21163638
    [Abstract] [Full Text] [Related]

  • 30. Amperometric detection of catechol using tyrosinase modified electrodes enhanced by the layer-by-layer assembly of gold nanocubes and polyelectrolytes.
    Karim MN, Lee JE, Lee HJ.
    Biosens Bioelectron; 2014 Nov 15; 61():147-51. PubMed ID: 24874658
    [Abstract] [Full Text] [Related]

  • 31. A biosensor fabricated by incorporation of a redox mediator into a carbon nanotube/nafion composite for tyrosinase immobilization: detection of matairesinol, an endocrine disruptor.
    Rather JA, Pilehvar S, De Wael K.
    Analyst; 2013 Jan 07; 138(1):204-10. PubMed ID: 23152952
    [Abstract] [Full Text] [Related]

  • 32. Amino acid ionic liquid modified mesoporous carbon: a tailor-made nanostructure biosensing platform.
    Wu L, Lu X, Zhang H, Chen J.
    ChemSusChem; 2012 Oct 07; 5(10):1918-25. PubMed ID: 22907799
    [Abstract] [Full Text] [Related]

  • 33. Biosensor based on tyrosinase immobilized on a single-walled carbon nanotube-modified glassy carbon electrode for detection of epinephrine.
    Apetrei IM, Apetrei C.
    Int J Nanomedicine; 2013 Oct 07; 8():4391-8. PubMed ID: 24348034
    [Abstract] [Full Text] [Related]

  • 34. Amperometric tyrosinase biosensor based on Fe3O4 nanoparticles-chitosan nanocomposite.
    Wang S, Tan Y, Zhao D, Liu G.
    Biosens Bioelectron; 2008 Jul 15; 23(12):1781-7. PubMed ID: 18387292
    [Abstract] [Full Text] [Related]

  • 35. A serotonin voltammetric biosensor composed of carbon nanocomposites and DNA aptamer.
    Li J, Si Y, Park YE, Choi JS, Jung SM, Lee JE, Lee HJ.
    Mikrochim Acta; 2021 Apr 01; 188(4):146. PubMed ID: 33792757
    [Abstract] [Full Text] [Related]

  • 36. Electrochemical biosensing of galactose based on carbon materials: graphene versus multi-walled carbon nanotubes.
    Dalkıran B, Erden PE, Kılıç E.
    Anal Bioanal Chem; 2016 Jun 01; 408(16):4329-39. PubMed ID: 27074783
    [Abstract] [Full Text] [Related]

  • 37. Tyrosinase biosensor for benzoic acid inhibition-based determination with the use of a flow-batch monosegmented sequential injection system.
    Kochana J, Kozak J, Skrobisz A, Woźniakiewicz M.
    Talanta; 2012 Jul 15; 96():147-52. PubMed ID: 22817942
    [Abstract] [Full Text] [Related]

  • 38. Stable and sensitive flow-through monitoring of phenol using a carbon nanotube based screen printed biosensor.
    Alarcón G, Guix M, Ambrosi A, Ramirez Silva MT, Palomar Pardave ME, Merkoçi A.
    Nanotechnology; 2010 Jun 18; 21(24):245502. PubMed ID: 20498520
    [Abstract] [Full Text] [Related]

  • 39. Amperometric biosensor for the determination of phenolic compounds using a tyrosinase graphite electrode in a flow injection system.
    Ortega F, Domínguez E, Jönsson-Pettersson G, Gorton L.
    J Biotechnol; 1993 Dec 18; 31(3):289-300. PubMed ID: 7764439
    [Abstract] [Full Text] [Related]

  • 40. Structural characterization by confocal laser scanning microscopy and electrochemical study of multi-walled carbon nanotube tyrosinase matrix for phenol detection.
    Guix M, Pérez-López B, Sahin M, Roldán M, Ambrosi A, Merkoçi A.
    Analyst; 2010 Aug 18; 135(8):1918-25. PubMed ID: 20532304
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 10.