These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Identification of TB-E12 as a novel FtsZ inhibitor with anti-tuberculosis activity. Lin Y, Zhang H, Zhu N, Wang X, Han Y, Chen M, Jiang J, Si S. Tuberculosis (Edinb); 2018 May; 110():79-85. PubMed ID: 29779778 [Abstract] [Full Text] [Related]
23. Increasing the structural coverage of tuberculosis drug targets. Baugh L, Phan I, Begley DW, Clifton MC, Armour B, Dranow DM, Taylor BM, Muruthi MM, Abendroth J, Fairman JW, Fox D, Dieterich SH, Staker BL, Gardberg AS, Choi R, Hewitt SN, Napuli AJ, Myers J, Barrett LK, Zhang Y, Ferrell M, Mundt E, Thompkins K, Tran N, Lyons-Abbott S, Abramov A, Sekar A, Serbzhinskiy D, Lorimer D, Buchko GW, Stacy R, Stewart LJ, Edwards TE, Van Voorhis WC, Myler PJ. Tuberculosis (Edinb); 2015 Mar; 95(2):142-8. PubMed ID: 25613812 [Abstract] [Full Text] [Related]
24. Novel targets in M. tuberculosis: search for new drugs. Lamichhane G. Trends Mol Med; 2011 Jan; 17(1):25-33. PubMed ID: 21071272 [Abstract] [Full Text] [Related]
25. QSAR based design of new antitubercular compounds: improved isoniazid derivatives against multidrug-resistant TB. Martins F, Ventura C, Santos S, Viveiros M. Curr Pharm Des; 2014 Jan; 20(27):4427-54. PubMed ID: 24245762 [Abstract] [Full Text] [Related]
26. Computationally Guided Identification of Novel Mycobacterium tuberculosis GlmU Inhibitory Leads, Their Optimization, and in Vitro Validation. Mehra R, Rani C, Mahajan P, Vishwakarma RA, Khan IA, Nargotra A. ACS Comb Sci; 2016 Feb 08; 18(2):100-16. PubMed ID: 26812086 [Abstract] [Full Text] [Related]
27. Identification of a novel inhibitor of isocitrate lyase as a potent antitubercular agent against both active and non-replicating Mycobacterium tuberculosis. Liu Y, Zhou S, Deng Q, Li X, Meng J, Guan Y, Li C, Xiao C. Tuberculosis (Edinb); 2016 Mar 08; 97():38-46. PubMed ID: 26980494 [Abstract] [Full Text] [Related]
28. Comparison of Multiple Linear Regressions and Neural Networks based QSAR models for the design of new antitubercular compounds. Ventura C, Latino DA, Martins F. Eur J Med Chem; 2013 Mar 08; 70():831-45. PubMed ID: 24246731 [Abstract] [Full Text] [Related]
29. New approaches to tuberculosis--novel drugs based on drug targets related to toll-like receptors in macrophages. Tomioka H. Curr Pharm Des; 2014 Mar 08; 20(27):4404-17. PubMed ID: 24245765 [Abstract] [Full Text] [Related]
30. In silico approaches and chemical space of anti-P-type ATPase compounds for discovering new antituberculous drugs. Santos P, López-Vallejo F, Soto CY. Chem Biol Drug Des; 2017 Aug 08; 90(2):175-187. PubMed ID: 28111912 [Abstract] [Full Text] [Related]
31. Characterization of 2-hydroxy-1-naphthaldehyde isonicotinoyl hydrazone as a novel inhibitor of methionine aminopeptidases from Mycobacterium tuberculosis. John SF, Aniemeke E, Ha NP, Chong CR, Gu P, Zhou J, Zhang Y, Graviss EA, Liu JO, Olaleye OA. Tuberculosis (Edinb); 2016 Dec 08; 101S():S73-S77. PubMed ID: 27856197 [Abstract] [Full Text] [Related]
32. In silico structure-based drug screening of novel antimycobacterial pharmacophores by DOCK-GOLD tandem screening. Taira J, Ito T, Nakatani H, Umei T, Baba H, Kawashima S, Maruoka T, Komatsu H, Sakamoto H, Aoki S. Int J Mycobacteriol; 2017 Dec 08; 6(2):142-148. PubMed ID: 28559515 [Abstract] [Full Text] [Related]
33. Mycobacterial β-carbonic anhydrases: Molecular biology, role in the pathogenesis of tuberculosis and inhibition studies. Parkkinen J, Bhowmik R, Tolvanen M, Carta F, Supuran CT, Parkkila S, Aspatwar A. Enzymes; 2024 Dec 08; 55():343-381. PubMed ID: 39222997 [Abstract] [Full Text] [Related]
34. Multi-target inhibitors for proteins associated with Alzheimer: in silico discovery using fragment-based descriptors. Speck-Planche A, Kleandrova VV, Luan F, Cordeiro MN. Curr Alzheimer Res; 2013 Feb 08; 10(2):117-24. PubMed ID: 22515494 [Abstract] [Full Text] [Related]
35. Computational medicinal chemistry for rational drug design: Identification of novel chemical structures with potential anti-tuberculosis activity. Koseki Y, Aoki S. Curr Top Med Chem; 2014 Feb 08; 14(1):176-88. PubMed ID: 24236720 [Abstract] [Full Text] [Related]
36. Proteomic characterization of Mycobacterium tuberculosis reveals potential targets of bostrycin. Yuan P, He L, Chen D, Sun Y, Ge Z, Shen D, Lu Y. J Proteomics; 2020 Feb 10; 212():103576. PubMed ID: 31706025 [Abstract] [Full Text] [Related]
37. Assessing the progress of Mycobacterium tuberculosis H37Rv structural genomics. Fang Z, van der Merwe RG, Warren RM, Schubert WD, Gey van Pittius NC. Tuberculosis (Edinb); 2015 Mar 10; 95(2):131-6. PubMed ID: 25578513 [Abstract] [Full Text] [Related]
38. 3D-QSAR Selectivity Analysis of 1-Adamantyl-3-Heteroaryl Urea Analogs as Potent Inhibitors of Mycobacterium tuberculosis. Wadhwa P, Bagchi S, Sharma A. Curr Comput Aided Drug Des; 2015 Mar 10; 11(2):164-83. PubMed ID: 26234390 [Abstract] [Full Text] [Related]
39. Design, synthesis and investigation on the structure-activity relationships of N-substituted 2-aminothiazole derivatives as antitubercular agents. Pieroni M, Wan B, Cho S, Franzblau SG, Costantino G. Eur J Med Chem; 2014 Jan 24; 72():26-34. PubMed ID: 24333612 [Abstract] [Full Text] [Related]
40. The Expanding Diversity of Mycobacterium tuberculosis Drug Targets. Wellington S, Hung DT. ACS Infect Dis; 2018 May 11; 4(5):696-714. PubMed ID: 29412643 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]