These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Design and Fabrication of a Hybrid Superhydrophobic-Hydrophilic Surface That Exhibits Stable Dropwise Condensation. Mondal B, Mac Giolla Eain M, Xu Q, Egan VM, Punch J, Lyons AM. ACS Appl Mater Interfaces; 2015 Oct 28; 7(42):23575-88. PubMed ID: 26372672 [Abstract] [Full Text] [Related]
3. Effect of droplet morphology on growth dynamics and heat transfer during condensation on superhydrophobic nanostructured surfaces. Miljkovic N, Enright R, Wang EN. ACS Nano; 2012 Feb 28; 6(2):1776-85. PubMed ID: 22293016 [Abstract] [Full Text] [Related]
7. Dynamics of nanoparticle self-assembly into superhydrophobic liquid marbles during water condensation. Rykaczewski K, Chinn J, Walker ML, Scott JH, Chinn A, Jones W. ACS Nano; 2011 Dec 27; 5(12):9746-54. PubMed ID: 22035295 [Abstract] [Full Text] [Related]
8. Robust Micro-Nanostructured Superhydrophobic Surfaces for Long-Term Dropwise Condensation. Tang Y, Yang X, Li Y, Lu Y, Zhu D. Nano Lett; 2021 Nov 24; 21(22):9824-9833. PubMed ID: 34472863 [Abstract] [Full Text] [Related]
9. Electric-field-enhanced condensation on superhydrophobic nanostructured surfaces. Miljkovic N, Preston DJ, Enright R, Wang EN. ACS Nano; 2013 Dec 23; 7(12):11043-54. PubMed ID: 24261667 [Abstract] [Full Text] [Related]
16. Hierarchical Superhydrophobic Surfaces with Micropatterned Nanowire Arrays for High-Efficiency Jumping Droplet Condensation. Wen R, Xu S, Zhao D, Lee YC, Ma X, Yang R. ACS Appl Mater Interfaces; 2017 Dec 27; 9(51):44911-44921. PubMed ID: 29214806 [Abstract] [Full Text] [Related]
19. Microscopic droplet formation and energy transport analysis of condensation on scalable superhydrophobic nanostructured copper oxide surfaces. Li G, Alhosani MH, Yuan S, Liu H, Ghaferi AA, Zhang T. Langmuir; 2014 Dec 09; 30(48):14498-511. PubMed ID: 25419845 [Abstract] [Full Text] [Related]