These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


279 related items for PubMed ID: 22456273

  • 41. Review of droplet dynamics and dropwise condensation enhancement: Theory, experiments and applications.
    Wang X, Xu B, Chen Z, Del Col D, Li D, Zhang L, Mou X, Liu Q, Yang Y, Cao Q.
    Adv Colloid Interface Sci; 2022 Jul; 305():102684. PubMed ID: 35525088
    [Abstract] [Full Text] [Related]

  • 42.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 43.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 44.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 45.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 46. Dropwise Condensation on Multiscale Bioinspired Metallic Surfaces with Nanofeatures.
    Orejon D, Askounis A, Takata Y, Attinger D.
    ACS Appl Mater Interfaces; 2019 Jul 10; 11(27):24735-24750. PubMed ID: 31180632
    [Abstract] [Full Text] [Related]

  • 47. Droplets on superhydrophobic surfaces: visualization of the contact area by cryo-scanning electron microscopy.
    Ensikat HJ, Schulte AJ, Koch K, Barthlott W.
    Langmuir; 2009 Nov 17; 25(22):13077-83. PubMed ID: 19899819
    [Abstract] [Full Text] [Related]

  • 48. Extremely superhydrophobic surfaces with micro- and nanostructures fabricated by copper catalytic etching.
    Lee JP, Choi S, Park S.
    Langmuir; 2011 Jan 18; 27(2):809-14. PubMed ID: 21162520
    [Abstract] [Full Text] [Related]

  • 49.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 50.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 51. Investigation of Dropwise Condensation Heat Transfer on Laser-Ablated Superhydrophobic/Hydrophilic Hybrid Copper Surfaces.
    Song Z, Lu M, Chen X.
    ACS Omega; 2020 Sep 22; 5(37):23588-23595. PubMed ID: 32984678
    [Abstract] [Full Text] [Related]

  • 52.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 53. Failure and Recovery of Droplet Nucleation and Growth on Damaged Nanostructures: A Molecular Dynamics Study.
    Tang G, Niu D, Guo L, Xu J.
    Langmuir; 2020 Nov 17; 36(45):13716-13724. PubMed ID: 33147034
    [Abstract] [Full Text] [Related]

  • 54.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 55.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 56. The temperature dependent dynamics and periodicity of dropwise condensation on surfaces with wetting heterogeneities.
    Feldmann D, Pinchasik BE.
    J Colloid Interface Sci; 2023 Aug 15; 644():146-156. PubMed ID: 37105038
    [Abstract] [Full Text] [Related]

  • 57. Self-Organization of Microscale Condensate for Delayed Flooding of Nanostructured Superhydrophobic Surfaces.
    Ölçeroğlu E, McCarthy M.
    ACS Appl Mater Interfaces; 2016 Mar 02; 8(8):5729-36. PubMed ID: 26855239
    [Abstract] [Full Text] [Related]

  • 58. Droplet evaporation of pure water and protein solution on nanostructured superhydrophobic surfaces of varying heights.
    Choi CH, Kim CJ.
    Langmuir; 2009 Jul 07; 25(13):7561-7. PubMed ID: 19518098
    [Abstract] [Full Text] [Related]

  • 59. Tuning Superhydrophobic Nanostructures To Enhance Jumping-Droplet Condensation.
    Mulroe MD, Srijanto BR, Ahmadi SF, Collier CP, Boreyko JB.
    ACS Nano; 2017 Aug 22; 11(8):8499-8510. PubMed ID: 28719740
    [Abstract] [Full Text] [Related]

  • 60. Clustered ribbed-nanoneedle structured copper surfaces with high-efficiency dropwise condensation heat transfer performance.
    Zhu J, Luo Y, Tian J, Li J, Gao X.
    ACS Appl Mater Interfaces; 2015 May 27; 7(20):10660-5. PubMed ID: 25966966
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 14.