These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
202 related items for PubMed ID: 2245643
41. Isoelectric focusing of crystallins in microsections of calf and adult bovine lens. Identification of water-insoluble crystallins complexing under nondenaturing conditions: demonstration of chaperone activity of alpha-crystallin. Babizhayev MA, Bours J, Utikal KJ. Ophthalmic Res; 1996; 28(6):365-74. PubMed ID: 9032796 [Abstract] [Full Text] [Related]
42. Crystallin proteins in lenses of hereditary cataractous rat, ICR/f. Takeuchi N, Kamei A. Biol Pharm Bull; 2000 Mar; 23(3):283-90. PubMed ID: 10726880 [Abstract] [Full Text] [Related]
43. Sequence analysis of lens beta-crystallins suggests involvement of calpain in cataract formation. David LL, Shearer TR, Shih M. J Biol Chem; 1993 Jan 25; 268(3):1937-40. PubMed ID: 8420967 [Abstract] [Full Text] [Related]
44. Lens growth and protein changes in the eastern grey kangaroo. Augusteyn RC. Mol Vis; 2011 Jan 25; 17():3234-42. PubMed ID: 22194649 [Abstract] [Full Text] [Related]
45. One-shot LC-MS/MS analysis of post-translational modifications including oxidation and deamidation of rat lens α- and β-crystallins induced by γ-irradiation. Kim I, Saito T, Fujii N, Kanamoto T, Fujii N. Amino Acids; 2016 Dec 25; 48(12):2855-2866. PubMed ID: 27600614 [Abstract] [Full Text] [Related]
46. Imbalances in the eye lens proteome are linked to cataract formation. Schmid PWN, Lim NCH, Peters C, Back KC, Bourgeois B, Pirolt F, Richter B, Peschek J, Puk O, Amarie OV, Dalke C, Haslbeck M, Weinkauf S, Madl T, Graw J, Buchner J. Nat Struct Mol Biol; 2021 Feb 25; 28(2):143-151. PubMed ID: 33432246 [Abstract] [Full Text] [Related]
47. Immunochemical detection of glycated beta- and gamma-crystallins in lens and their circulating autoantibodies (IgG) in streptozocin induced diabetic rat. Ranjan M, Nayak S, Rao BS. Mol Vis; 2006 Sep 13; 12():1077-85. PubMed ID: 17093392 [Abstract] [Full Text] [Related]
50. [Lens crystallin leakage in aqueous humor from human cataractous lenses]. Kodama T. Nippon Ganka Gakkai Zasshi; 1991 Nov 13; 95(11):1065-70. PubMed ID: 1759646 [Abstract] [Full Text] [Related]
51. Variation in proportion and molecular weight of native crystallins from single human lenses upon aging and formation of nuclear cataract. Bessems GJ, Hoenders HJ, Wollensak J. Exp Eye Res; 1983 Dec 13; 37(6):627-37. PubMed ID: 6662209 [Abstract] [Full Text] [Related]
52. Aggregation of lens crystallins in an in vivo hyperbaric oxygen guinea pig model of nuclear cataract: dynamic light-scattering and HPLC analysis. Simpanya MF, Ansari RR, Suh KI, Leverenz VR, Giblin FJ. Invest Ophthalmol Vis Sci; 2005 Dec 13; 46(12):4641-51. PubMed ID: 16303961 [Abstract] [Full Text] [Related]
53. The state of sulphydryl groups in proteins isolated from normal and cataractous human lenses. Hum TP, Augusteyn RC. Curr Eye Res; 1987 Sep 13; 6(9):1091-101. PubMed ID: 3665565 [Abstract] [Full Text] [Related]
54. Identification of origin of two polypeptides of 4 and 5 kD isolated from human lenses. Srivastava OP, Srivastava K, Silney C. Invest Ophthalmol Vis Sci; 1994 Jan 13; 35(1):207-14. PubMed ID: 7507906 [Abstract] [Full Text] [Related]
55. Effect of calpain on hereditary cataractous rat, ICR/f. Takeuchi N, Ito H, Namiki K, Kamei A. Biol Pharm Bull; 2001 Nov 13; 24(11):1246-51. PubMed ID: 11725957 [Abstract] [Full Text] [Related]