These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
147 related items for PubMed ID: 22463608
21. A cell-penetrating phospholamban-specific RNA aptamer enhances Ca2+ transients and contractile function in cardiomyocytes. Sakai H, Ikeda Y, Honda T, Tanaka Y, Shiraishi K, Inui M. J Mol Cell Cardiol; 2014 Nov; 76():177-85. PubMed ID: 25240642 [Abstract] [Full Text] [Related]
22. Reversal of phospholamban-induced inhibition of cardiac sarcoplasmic reticulum Ca(2+)-ATPase by tannin. Chiesi M, Schwaller R. Biochem Biophys Res Commun; 1994 Aug 15; 202(3):1668-73. PubMed ID: 8060355 [Abstract] [Full Text] [Related]
29. The antiapoptotic protein HAX-1 mediates half of phospholamban's inhibitory activity on calcium cycling and contractility in the heart. Bidwell PA, Haghighi K, Kranias EG. J Biol Chem; 2018 Jan 05; 293(1):359-367. PubMed ID: 29150445 [Abstract] [Full Text] [Related]
30. Ontogeny of sarcoplasmic reticulum protein phosphorylation by Ca2+--calmodulin-dependent protein kinase. Xu A, Hawkins C, Narayanan N. J Mol Cell Cardiol; 1997 Jan 05; 29(1):405-18. PubMed ID: 9040054 [Abstract] [Full Text] [Related]
31. Regulation of sarcoplasmic reticulum Ca2+ ATPase pump expression and its relevance to cardiac muscle physiology and pathology. Periasamy M, Bhupathy P, Babu GJ. Cardiovasc Res; 2008 Jan 15; 77(2):265-73. PubMed ID: 18006443 [Abstract] [Full Text] [Related]
32. ZBTB20 Regulates SERCA2a Activity and Myocardial Contractility Through Phospholamban. Ren AJ, Wei C, Liu YJ, Liu M, Wang P, Fan J, Wang K, Zhang S, Qin Z, Ren QX, Zheng Y, Chen YX, Xie Z, Gao L, Zhu Y, Zhang Y, Yang HT, Zhang WJ. Circ Res; 2024 Feb 02; 134(3):252-265. PubMed ID: 38166470 [Abstract] [Full Text] [Related]
33. Expression of SERCA and phospholamban in rainbow trout (Oncorhynchus mykiss) heart: comparison of atrial and ventricular tissue and effects of thermal acclimation. Korajoki H, Vornanen M. J Exp Biol; 2012 Apr 01; 215(Pt 7):1162-9. PubMed ID: 22399661 [Abstract] [Full Text] [Related]
34. Ca2+/calmodulin-dependent protein kinase: a key component in the contractile recovery from acidosis. Mattiazzi A, Vittone L, Mundiña-Weilenmann C. Cardiovasc Res; 2007 Mar 01; 73(4):648-56. PubMed ID: 17222810 [Abstract] [Full Text] [Related]
35. In vitro selection and characterization of DNA aptamers specific for phospholamban. Tanaka Y, Honda T, Matsuura K, Kimura Y, Inui M. J Pharmacol Exp Ther; 2009 Apr 01; 329(1):57-63. PubMed ID: 19158349 [Abstract] [Full Text] [Related]
36. The role of CaMKII regulation of phospholamban activity in heart disease. Mattiazzi A, Kranias EG. Front Pharmacol; 2014 Apr 01; 5():5. PubMed ID: 24550830 [Abstract] [Full Text] [Related]
37. Alpha-kinase anchoring protein alphaKAP interacts with SERCA2A to spatially position Ca2+/calmodulin-dependent protein kinase II and modulate phospholamban phosphorylation. Singh P, Salih M, Tuana BS. J Biol Chem; 2009 Oct 09; 284(41):28212-28221. PubMed ID: 19671701 [Abstract] [Full Text] [Related]
38. Increased SR Ca2+ cycling contributes to improved contractile performance in SERCA2a-overexpressing transgenic rats. Maier LS, Wahl-Schott C, Horn W, Weichert S, Pagel C, Wagner S, Dybkova N, Müller OJ, Näbauer M, Franz WM, Pieske B. Cardiovasc Res; 2005 Sep 01; 67(4):636-46. PubMed ID: 15932750 [Abstract] [Full Text] [Related]