These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


248 related items for PubMed ID: 22469635

  • 1. Chirality effect in disordered graphene ribbon junctions.
    Long W.
    J Phys Condens Matter; 2012 May 02; 24(17):175302. PubMed ID: 22469635
    [Abstract] [Full Text] [Related]

  • 2. Dephasing effect on transport of a graphene p-n junction in a quantum Hall regime.
    Chen JC, Zhang H, Shen SQ, Sun QF.
    J Phys Condens Matter; 2011 Dec 14; 23(49):495301. PubMed ID: 22089530
    [Abstract] [Full Text] [Related]

  • 3. Thermopower and conductance for a graphene p-n junction.
    Lv SH, Feng SB, Li YX.
    J Phys Condens Matter; 2012 Apr 11; 24(14):145801. PubMed ID: 22410842
    [Abstract] [Full Text] [Related]

  • 4. Electronic transport between quantum Hall states and quantum anomalous Hall states in a graphene nanoribbon based heterojunction.
    Xu XR, Cheng SG.
    J Phys Condens Matter; 2013 Feb 20; 25(7):075304. PubMed ID: 23343589
    [Abstract] [Full Text] [Related]

  • 5. Magnetic response of conductance peak structure in junction-confined graphene nanoribbons.
    Yamamoto M, Wakabayashi K.
    Nanoscale; 2012 Feb 21; 4(4):1138-45. PubMed ID: 22080960
    [Abstract] [Full Text] [Related]

  • 6. Electronic transport through a graphene-based ferromagnetic/normal/ferromagnetic junction.
    Chen JC, Cheng SG, Shen SQ, Sun QF.
    J Phys Condens Matter; 2010 Jan 27; 22(3):035301. PubMed ID: 21386283
    [Abstract] [Full Text] [Related]

  • 7. Conductive junctions with parallel graphene sheets.
    Zheng X, Ke SH, Yang W.
    J Chem Phys; 2010 Mar 21; 132(11):114703. PubMed ID: 20331312
    [Abstract] [Full Text] [Related]

  • 8. Electronic structure and transport of a carbon chain between graphene nanoribbon leads.
    Zhang GP, Fang XW, Yao YX, Wang CZ, Ding ZJ, Ho KM.
    J Phys Condens Matter; 2011 Jan 19; 23(2):025302. PubMed ID: 21406839
    [Abstract] [Full Text] [Related]

  • 9. Lead-position dependent regular oscillations and random fluctuations of conductance in graphene quantum dots.
    Huang L, Yang R, Lai YC, Ferry DK.
    J Phys Condens Matter; 2013 Feb 27; 25(8):085502. PubMed ID: 23343960
    [Abstract] [Full Text] [Related]

  • 10. Thermally driven spin transport through a transverse-biased zigzag-edge graphene nanoribbon.
    Zhao Z, Zhai X, Jin G.
    J Phys Condens Matter; 2012 Mar 07; 24(9):095302. PubMed ID: 22316566
    [Abstract] [Full Text] [Related]

  • 11. The effect of magnetic field and disorders on the electronic transport in graphene nanoribbons.
    Kumar SB, Jalil MB, Tan SG, Liang G.
    J Phys Condens Matter; 2010 Sep 22; 22(37):375303. PubMed ID: 21403192
    [Abstract] [Full Text] [Related]

  • 12. Tunnel anisotropic magnetoresistance in graphene with Rashba spin-orbit interaction.
    Niu ZP.
    J Phys Condens Matter; 2011 Nov 02; 23(43):435302. PubMed ID: 21996709
    [Abstract] [Full Text] [Related]

  • 13. Electronic properties of a graphene antidot in magnetic fields.
    Park PS, Kim SC, Yang SR.
    J Phys Condens Matter; 2010 Sep 22; 22(37):375302. PubMed ID: 21403191
    [Abstract] [Full Text] [Related]

  • 14. Disorder-induced enhancement of transport through graphene p-n junctions.
    Long W, Sun QF, Wang J.
    Phys Rev Lett; 2008 Oct 17; 101(16):166806. PubMed ID: 18999703
    [Abstract] [Full Text] [Related]

  • 15. Magnetothermoelectric transport in modulated and unmodulated graphene.
    Nasir R, Sabeeh K.
    J Phys Condens Matter; 2011 Sep 21; 23(37):375301. PubMed ID: 21881170
    [Abstract] [Full Text] [Related]

  • 16. Quantum transport through a graphene nanoribbon-superconductor junction.
    Sun QF, Xie XC.
    J Phys Condens Matter; 2009 Aug 26; 21(34):344204. PubMed ID: 21715779
    [Abstract] [Full Text] [Related]

  • 17. Transport properties of graphene nanoribbon-based molecular devices.
    Ding Z, Jiang J, Xing H, Shu H, Dong R, Chen X, Lu W.
    J Comput Chem; 2011 Mar 26; 32(4):737-41. PubMed ID: 20925088
    [Abstract] [Full Text] [Related]

  • 18. Conductance gaps in graphene ribbons designed by molecular aggregations.
    Rosales L, Pacheco M, Barticevic Z, Latgé A, Orellana PA.
    Nanotechnology; 2009 Mar 04; 20(9):095705. PubMed ID: 19417501
    [Abstract] [Full Text] [Related]

  • 19. Gap opening in the zeroth Landau level in gapped graphene: pseudo-Zeeman splitting in an angular magnetic field.
    Tahir M, Sabeeh K.
    J Phys Condens Matter; 2012 Apr 04; 24(13):135005. PubMed ID: 22392807
    [Abstract] [Full Text] [Related]

  • 20. A model for ballistic transport across locally gated graphene bipolar junctions.
    Nguyen NT, To DQ, Nguyen VL.
    J Phys Condens Matter; 2014 Jan 08; 26(1):015301. PubMed ID: 24275156
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 13.