These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


141 related items for PubMed ID: 22470102

  • 1. ECM spreading behaviour on micropatterned TiO2 nanotube surfaces.
    Pittrof A, Park J, Bauer S, Schmuki P.
    Acta Biomater; 2012 Jul; 8(7):2639-47. PubMed ID: 22470102
    [Abstract] [Full Text] [Related]

  • 2. Size selective behavior of mesenchymal stem cells on ZrO(2) and TiO(2) nanotube arrays.
    Bauer S, Park J, Faltenbacher J, Berger S, von der Mark K, Schmuki P.
    Integr Biol (Camb); 2009 Sep; 1(8-9):525-32. PubMed ID: 20023767
    [Abstract] [Full Text] [Related]

  • 3. Improved attachment of mesenchymal stem cells on super-hydrophobic TiO2 nanotubes.
    Bauer S, Park J, von der Mark K, Schmuki P.
    Acta Biomater; 2008 Sep; 4(5):1576-82. PubMed ID: 18485845
    [Abstract] [Full Text] [Related]

  • 4. The osteogenic activity of strontium loaded titania nanotube arrays on titanium substrates.
    Zhao L, Wang H, Huo K, Zhang X, Wang W, Zhang Y, Wu Z, Chu PK.
    Biomaterials; 2013 Jan; 34(1):19-29. PubMed ID: 23046755
    [Abstract] [Full Text] [Related]

  • 5. Covalent functionalization of TiO2 nanotube arrays with EGF and BMP-2 for modified behavior towards mesenchymal stem cells.
    Bauer S, Park J, Pittrof A, Song YY, von der Mark K, Schmuki P.
    Integr Biol (Camb); 2011 Sep; 3(9):927-36. PubMed ID: 21829821
    [Abstract] [Full Text] [Related]

  • 6. Synergistic control of mesenchymal stem cell differentiation by nanoscale surface geometry and immobilized growth factors on TiO2 nanotubes.
    Park J, Bauer S, Pittrof A, Killian MS, Schmuki P, von der Mark K.
    Small; 2012 Jan 09; 8(1):98-107. PubMed ID: 22095845
    [Abstract] [Full Text] [Related]

  • 7. Soft tissue response to titanium dioxide nanotube modified implants.
    Smith GC, Chamberlain L, Faxius L, Johnston GW, Jin S, Bjursten LM.
    Acta Biomater; 2011 Aug 09; 7(8):3209-15. PubMed ID: 21601662
    [Abstract] [Full Text] [Related]

  • 8. The effect of anatase TiO2 nanotube layers on MC3T3-E1 preosteoblast adhesion, proliferation, and differentiation.
    Yu WQ, Jiang XQ, Zhang FQ, Xu L.
    J Biomed Mater Res A; 2010 Sep 15; 94(4):1012-22. PubMed ID: 20694968
    [Abstract] [Full Text] [Related]

  • 9. Regulation of the behaviors of mesenchymal stem cells by surface nanostructured titanium.
    Lai M, Cai K, Hu Y, Yang X, Liu Q.
    Colloids Surf B Biointerfaces; 2012 Sep 01; 97():211-20. PubMed ID: 22609606
    [Abstract] [Full Text] [Related]

  • 10. Micropatterned TiO₂ nanotube surfaces for site-selective nucleation of hydroxyapatite from simulated body fluid.
    Pittrof A, Bauer S, Schmuki P.
    Acta Biomater; 2011 Jan 01; 7(1):424-31. PubMed ID: 20883841
    [Abstract] [Full Text] [Related]

  • 11. The Implication of Spatial Statistics in Human Mesenchymal Stem Cell Response to Nanotubular Architectures.
    Steeves AJ, Ho W, Munisso MC, Lomboni DJ, Larrañaga E, Omelon S, Martínez E, Spinello D, Variola F.
    Int J Nanomedicine; 2020 Jan 01; 15():2151-2169. PubMed ID: 32280212
    [Abstract] [Full Text] [Related]

  • 12. Early adhesion of human mesenchymal stem cells on TiO(2) surfaces studied by single-cell force spectroscopy measurements.
    Bertoncini P, Le Chevalier S, Lavenus S, Layrolle P, Louarn G.
    J Mol Recognit; 2012 May 01; 25(5):262-9. PubMed ID: 22528187
    [Abstract] [Full Text] [Related]

  • 13. Nanosize and vitality: TiO2 nanotube diameter directs cell fate.
    Park J, Bauer S, von der Mark K, Schmuki P.
    Nano Lett; 2007 Jun 01; 7(6):1686-91. PubMed ID: 17503870
    [Abstract] [Full Text] [Related]

  • 14. Enhanced osteogenic differentiation of human mesenchymal stem cells on Ti surfaces with electrochemical nanopattern formation.
    Shin YC, Pang KM, Han DW, Lee KH, Ha YC, Park JW, Kim B, Kim D, Lee JH.
    Mater Sci Eng C Mater Biol Appl; 2019 Jun 01; 99():1174-1181. PubMed ID: 30889651
    [Abstract] [Full Text] [Related]

  • 15. Fabrication of highly ordered TiO2 nanorod/nanotube adjacent arrays for photoelectrochemical applications.
    Zhang H, Liu P, Liu X, Zhang S, Yao X, An T, Amal R, Zhao H.
    Langmuir; 2010 Jul 06; 26(13):11226-32. PubMed ID: 20384304
    [Abstract] [Full Text] [Related]

  • 16. Anodic fabrication and bioactivity of Nb-doped TiO2 nanotubes.
    Ding D, Ning C, Huang L, Jin F, Hao Y, Bai S, Li Y, Li M, Mao D.
    Nanotechnology; 2009 Jul 29; 20(30):305103. PubMed ID: 19581696
    [Abstract] [Full Text] [Related]

  • 17. Guided proliferation and bone-forming functionality on highly ordered large diameter TiO2 nanotube arrays.
    Zhang R, Wu H, Ni J, Zhao C, Chen Y, Zheng C, Zhang X.
    Mater Sci Eng C Mater Biol Appl; 2015 Aug 29; 53():272-9. PubMed ID: 26042715
    [Abstract] [Full Text] [Related]

  • 18. Improved bone-forming functionality on diameter-controlled TiO(2) nanotube surface.
    Brammer KS, Oh S, Cobb CJ, Bjursten LM, van der Heyde H, Jin S.
    Acta Biomater; 2009 Oct 29; 5(8):3215-23. PubMed ID: 19447210
    [Abstract] [Full Text] [Related]

  • 19. Surface functionalization of TiO2 nanotubes with bone morphogenetic protein 2 and its synergistic effect on the differentiation of mesenchymal stem cells.
    Lai M, Cai K, Zhao L, Chen X, Hou Y, Yang Z.
    Biomacromolecules; 2011 Apr 11; 12(4):1097-105. PubMed ID: 21381690
    [Abstract] [Full Text] [Related]

  • 20. Titanium nanostructures for biomedical applications.
    Kulkarni M, Mazare A, Gongadze E, Perutkova Š, Kralj-Iglič V, Milošev I, Schmuki P, A Iglič, Mozetič M.
    Nanotechnology; 2015 Feb 13; 26(6):062002. PubMed ID: 25611515
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.