These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
272 related items for PubMed ID: 22471240
1. Impact of thermal processing on sulforaphane yield from broccoli ( Brassica oleracea L. ssp. italica). Wang GC, Farnham M, Jeffery EH. J Agric Food Chem; 2012 Jul 11; 60(27):6743-8. PubMed ID: 22471240 [Abstract] [Full Text] [Related]
2. The potential to intensify sulforaphane formation in cooked broccoli (Brassica oleracea var. italica) using mustard seeds (Sinapis alba). Ghawi SK, Methven L, Niranjan K. Food Chem; 2013 Jun 01; 138(2-3):1734-41. PubMed ID: 23411305 [Abstract] [Full Text] [Related]
3. Epithiospecifier protein from broccoli (Brassica oleracea L. ssp. italica) inhibits formation of the anticancer agent sulforaphane. Matusheski NV, Swarup R, Juvik JA, Mithen R, Bennett M, Jeffery EH. J Agric Food Chem; 2006 Mar 22; 54(6):2069-76. PubMed ID: 16536577 [Abstract] [Full Text] [Related]
4. Sulforaphane formation and bioaccessibility are more affected by steaming time than meal composition during in vitro digestion of broccoli. Sarvan I, Kramer E, Bouwmeester H, Dekker M, Verkerk R. Food Chem; 2017 Jan 01; 214():580-586. PubMed ID: 27507513 [Abstract] [Full Text] [Related]
6. Approaches for enhancing the stability and formation of sulforaphane. Yuanfeng W, Chengzhi L, Ligen Z, Juan S, Xinjie S, Yao Z, Jianwei M. Food Chem; 2021 May 30; 345():128771. PubMed ID: 33601652 [Abstract] [Full Text] [Related]
7. Heating decreases epithiospecifier protein activity and increases sulforaphane formation in broccoli. Matusheski NV, Juvik JA, Jeffery EH. Phytochemistry; 2004 May 30; 65(9):1273-81. PubMed ID: 15184012 [Abstract] [Full Text] [Related]
8. The influence of processing and preservation on the retention of health-promoting compounds in broccoli. Galgano F, Favati F, Caruso M, Pietrafesa A, Natella S. J Food Sci; 2007 Mar 30; 72(2):S130-5. PubMed ID: 17995854 [Abstract] [Full Text] [Related]
9. Optimization of an Extraction Process to Obtain a Food-Grade Sulforaphane-Rich Extract from Broccoli (Brassica oleracea var. italica). González F, Quintero J, Del Río R, Mahn A. Molecules; 2021 Jul 01; 26(13):. PubMed ID: 34279379 [Abstract] [Full Text] [Related]
10. Effect of meal composition and cooking duration on the fate of sulforaphane following consumption of broccoli by healthy human subjects. Rungapamestry V, Duncan AJ, Fuller Z, Ratcliffe B. Br J Nutr; 2007 Apr 01; 97(4):644-52. PubMed ID: 17349076 [Abstract] [Full Text] [Related]
11. Comparison of the bioactivity of two glucoraphanin hydrolysis products found in broccoli, sulforaphane and sulforaphane nitrile. Matusheski NV, Jeffery EH. J Agric Food Chem; 2001 Dec 01; 49(12):5743-9. PubMed ID: 11743757 [Abstract] [Full Text] [Related]
12. Sulforaphane-enriched extracts from glucoraphanin-rich broccoli exert antimicrobial activity against gut pathogens in vitro and innovative cooking methods increase in vivo intestinal delivery of sulforaphane. Abukhabta S, Khalil Ghawi S, Karatzas KA, Charalampopoulos D, McDougall G, Allwood JW, Verrall S, Lavery S, Latimer C, Pourshahidi LK, Lawther R, O'Connor G, Rowland I, Gill CIR. Eur J Nutr; 2021 Apr 01; 60(3):1263-1276. PubMed ID: 32651764 [Abstract] [Full Text] [Related]
13. Glucoraphanin and sulforaphane evolution during juice preparation from broccoli sprouts. Bello C, Maldini M, Baima S, Scaccini C, Natella F. Food Chem; 2018 Dec 01; 268():249-256. PubMed ID: 30064754 [Abstract] [Full Text] [Related]
14. Hydrolysis before Stir-Frying Increases the Isothiocyanate Content of Broccoli. Wu Y, Shen Y, Wu X, Zhu Y, Mupunga J, Bao W, Huang J, Mao J, Liu S, You Y. J Agric Food Chem; 2018 Feb 14; 66(6):1509-1515. PubMed ID: 29357241 [Abstract] [Full Text] [Related]
15. Thermosonication for the Production of Sulforaphane Rich Broccoli Ingredients. Shokri S, Jegasothy H, Augustin MA, Terefe NS. Biomolecules; 2021 Feb 20; 11(2):. PubMed ID: 33672547 [Abstract] [Full Text] [Related]
16. The impact of loss of myrosinase on the bioactivity of broccoli products in F344 rats. Zhu N, Soendergaard M, Jeffery EH, Lai RH. J Agric Food Chem; 2010 Feb 10; 58(3):1558-63. PubMed ID: 20085276 [Abstract] [Full Text] [Related]
17. Effect of selenium-sulfur interaction on the anabolism of sulforaphane in broccoli. Mao S, Wang J, Wu Q, Liang M, Yuan Y, Wu T, Liu M, Wu Q, Huang K. Phytochemistry; 2020 Nov 10; 179():112499. PubMed ID: 32980712 [Abstract] [Full Text] [Related]
18. Sulforaphane Bioavailability from Glucoraphanin-Rich Broccoli: Control by Active Endogenous Myrosinase. Fahey JW, Holtzclaw WD, Wehage SL, Wade KL, Stephenson KK, Talalay P. PLoS One; 2015 Nov 10; 10(11):e0140963. PubMed ID: 26524341 [Abstract] [Full Text] [Related]
19. Preparative HPLC method for the purification of sulforaphane and sulforaphane nitrile from Brassica oleracea. Matusheski NV, Wallig MA, Juvik JA, Klein BP, Kushad MM, Jeffery EH. J Agric Food Chem; 2001 Apr 10; 49(4):1867-72. PubMed ID: 11308338 [Abstract] [Full Text] [Related]
20. Kinetics of the stability of broccoli (Brassica oleracea Cv. Italica) myrosinase and isothiocyanates in broccoli juice during pressure/temperature treatments. Van Eylen D, Oey I, Hendrickx M, Van Loey A. J Agric Food Chem; 2007 Mar 21; 55(6):2163-70. PubMed ID: 17305356 [Abstract] [Full Text] [Related] Page: [Next] [New Search]