These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


151 related items for PubMed ID: 22484236

  • 61. Influences of Probe's Morphology for Metal Ion Detection Based on Light-Addressable Potentiometric Sensors.
    Shao C, Zhou S, Yin X, Gu Y, Jia Y.
    Sensors (Basel); 2016 May 14; 16(5):. PubMed ID: 27187412
    [Abstract] [Full Text] [Related]

  • 62. Ultrafast Glutamate Biosensor Recordings in Brain Slices Reveal Complex Single Exocytosis Transients.
    Wang Y, Mishra D, Bergman J, Keighron JD, Skibicka KP, Cans AS.
    ACS Chem Neurosci; 2019 Mar 20; 10(3):1744-1752. PubMed ID: 30605606
    [Abstract] [Full Text] [Related]

  • 63. Separating vesicle fusion and exocytosis in hypertonic conditions.
    Troyer KP, Mundorf ML, Fries HE, Wightman RM.
    Ann N Y Acad Sci; 2002 Oct 20; 971():251-3. PubMed ID: 12438126
    [Abstract] [Full Text] [Related]

  • 64. Comparison of cysteine string protein (Csp) and mutant alpha-SNAP overexpression reveals a role for csp in late steps of membrane fusion in dense-core granule exocytosis in adrenal chromaffin cells.
    Graham ME, Burgoyne RD.
    J Neurosci; 2000 Feb 15; 20(4):1281-9. PubMed ID: 10662817
    [Abstract] [Full Text] [Related]

  • 65. Interplay between membrane dynamics, diffusion and swelling pressure governs individual vesicular exocytotic events during release of adrenaline by chromaffin cells.
    Amatore C, Bouret Y, Travis ER, Wightman RM.
    Biochimie; 2000 May 15; 82(5):481-96. PubMed ID: 10865134
    [Abstract] [Full Text] [Related]

  • 66. Intragranular pH rapidly modulates exocytosis in adrenal chromaffin cells.
    Camacho M, Machado JD, Montesinos MS, Criado M, Borges R.
    J Neurochem; 2006 Jan 15; 96(2):324-34. PubMed ID: 16336635
    [Abstract] [Full Text] [Related]

  • 67. Calmodulin inhibitors block quantal catecholamine release and increase acidification of neurosecretory granules in rat adrenal chromaffin cells.
    Staal RG, Mosharov E, Sulzer D.
    Ann N Y Acad Sci; 2002 Oct 15; 971():269-72. PubMed ID: 12438131
    [No Abstract] [Full Text] [Related]

  • 68. Use of information visualization methods eliminating cross talk in multiple sensing units investigated for a light-addressable potentiometric sensor.
    Siqueira JR, Maki RM, Paulovich FV, Werner CF, Poghossian A, de Oliveira MC, Zucolotto V, Oliveira ON, Schöning MJ.
    Anal Chem; 2010 Jan 01; 82(1):61-5. PubMed ID: 20041720
    [Abstract] [Full Text] [Related]

  • 69. Molecular mechanisms of glutamate release by bovine chromaffin cells in primary culture.
    Romero O, Figueroa S, Vicente S, González MP, Oset-Gasque MJ.
    Neuroscience; 2003 Jan 01; 116(3):817-29. PubMed ID: 12573722
    [Abstract] [Full Text] [Related]

  • 70. Characterization of extracellular pH drop due to the activation of the secretory process by acetylcholine in the bovine adrenal medulla.
    Viglione PN, Gomez C, Pinto JE.
    Arch Int Physiol Biochim Biophys; 1994 Jan 01; 102(5):247-50. PubMed ID: 7849270
    [Abstract] [Full Text] [Related]

  • 71. Chromogranins as regulators of exocytosis.
    Borges R, Díaz-Vera J, Domínguez N, Arnau MR, Machado JD.
    J Neurochem; 2010 Jul 01; 114(2):335-43. PubMed ID: 20456013
    [Abstract] [Full Text] [Related]

  • 72. Simultaneous monitoring of monoamines, amino acids, nucleotides and neuropeptides by liquid chromatography-tandem mass spectrometry and its application to neurosecretion in bovine chromaffin cells.
    Wojnicz A, Avendaño-Ortiz J, de Pascual R, Ruiz-Pascual L, García AG, Ruiz-Nuño A.
    J Mass Spectrom; 2016 Aug 01; 51(8):651-664. PubMed ID: 28239974
    [Abstract] [Full Text] [Related]

  • 73. Faster kinetics of quantal catecholamine release in mouse chromaffin cells stimulated with acetylcholine, compared with other secretagogues.
    Calvo-Gallardo E, López-Gil Á, Méndez-López I, Martínez-Ramírez C, Padín JF, García AG.
    J Neurochem; 2016 Dec 01; 139(5):722-736. PubMed ID: 27649809
    [Abstract] [Full Text] [Related]

  • 74. Altered exocytosis in chromaffin cells from mouse models of neurodegenerative diseases.
    de Diego AMG, García AG.
    Acta Physiol (Oxf); 2018 Oct 01; 224(2):e13090. PubMed ID: 29742321
    [Abstract] [Full Text] [Related]

  • 75. Exocytosis: the chromaffin cell as a model system.
    Bader MF, Holz RW, Kumakura K, Vitale N.
    Ann N Y Acad Sci; 2002 Oct 01; 971():178-83. PubMed ID: 12438117
    [Abstract] [Full Text] [Related]

  • 76. The release of 3H-1-methyl-4-phenylpyridinium from bovine adrenal chromaffin cells is modulated by somatostatin.
    Ribeiro L, Martel F, Azevedo I.
    Regul Pept; 2006 Dec 10; 137(3):107-13. PubMed ID: 16846655
    [Abstract] [Full Text] [Related]

  • 77. Exocytosis of a single bovine adrenal chromaffin cell: the electrical and morphological studies.
    Tsai CC, Yang CC, Shih PY, Wu CS, Chen CD, Pan CY, Chen YT.
    J Phys Chem B; 2008 Jul 31; 112(30):9165-73. PubMed ID: 18598074
    [Abstract] [Full Text] [Related]

  • 78. In Situ Sensing of the Neurotransmitter Acetylcholine in a Dynamic Range of 1 nM to 1 mM.
    Mousavi MPS, Abd El-Rahman MK, Mahmoud AM, Abdelsalam RM, Bühlmann P.
    ACS Sens; 2018 Dec 28; 3(12):2581-2589. PubMed ID: 30398333
    [Abstract] [Full Text] [Related]

  • 79. A morphometric analysis of exocytosis in KCl-stimulated bovine chromaffin cells.
    Fox GQ.
    Cell Tissue Res; 1996 May 28; 284(2):303-16. PubMed ID: 8625396
    [Abstract] [Full Text] [Related]

  • 80. Calcium signaling and exocytosis in adrenal chromaffin cells.
    García AG, García-De-Diego AM, Gandía L, Borges R, García-Sancho J.
    Physiol Rev; 2006 Oct 28; 86(4):1093-131. PubMed ID: 17015485
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 8.