These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


105 related items for PubMed ID: 22491778

  • 1. Short- and long-term dynamic responses of the metabolic network and gene expression in yeast to a transient change in the nutrient environment.
    Dikicioglu D, Dunn WB, Kell DB, Kirdar B, Oliver SG.
    Mol Biosyst; 2012 Jun; 8(6):1760-74. PubMed ID: 22491778
    [Abstract] [Full Text] [Related]

  • 2. Effect of carbon source perturbations on transcriptional regulation of metabolic fluxes in Saccharomyces cerevisiae.
    Cakir T, Kirdar B, Onsan ZI, Ulgen KO, Nielsen J.
    BMC Syst Biol; 2007 Mar 27; 1():18. PubMed ID: 17408508
    [Abstract] [Full Text] [Related]

  • 3. How yeast re-programmes its transcriptional profile in response to different nutrient impulses.
    Dikicioglu D, Karabekmez E, Rash B, Pir P, Kirdar B, Oliver SG.
    BMC Syst Biol; 2011 Sep 25; 5():148. PubMed ID: 21943358
    [Abstract] [Full Text] [Related]

  • 4. Application of real-time RT-PCR to study gene expression in active dry yeast (ADY) during the rehydration phase.
    Vaudano E, Costantini A, Cersosimo M, Del Prete V, Garcia-Moruno E.
    Int J Food Microbiol; 2009 Jan 31; 129(1):30-6. PubMed ID: 19062120
    [Abstract] [Full Text] [Related]

  • 5. Control of Saccharomyces cerevisiae carboxypeptidase S (CPS1) gene expression under nutrient limitation.
    Bordallo J, Suárez-Rendueles P.
    Yeast; 1993 Apr 31; 9(4):339-49. PubMed ID: 8511964
    [Abstract] [Full Text] [Related]

  • 6. A systems biology approach to study glucose repression in the yeast Saccharomyces cerevisiae.
    Westergaard SL, Oliveira AP, Bro C, Olsson L, Nielsen J.
    Biotechnol Bioeng; 2007 Jan 01; 96(1):134-45. PubMed ID: 16878332
    [Abstract] [Full Text] [Related]

  • 7. Nutrient control of eukaryote cell growth: a systems biology study in yeast.
    Gutteridge A, Pir P, Castrillo JI, Charles PD, Lilley KS, Oliver SG.
    BMC Biol; 2010 May 24; 8():68. PubMed ID: 20497545
    [Abstract] [Full Text] [Related]

  • 8. Transcriptional responses of Saccharomyces cerevisiae to preferred and nonpreferred nitrogen sources in glucose-limited chemostat cultures.
    Boer VM, Tai SL, Vuralhan Z, Arifin Y, Walsh MC, Piper MD, de Winde JH, Pronk JT, Daran JM.
    FEMS Yeast Res; 2007 Jun 24; 7(4):604-20. PubMed ID: 17419774
    [Abstract] [Full Text] [Related]

  • 9. Swi/SNF-GCN5-dependent chromatin remodelling determines induced expression of GDH3, one of the paralogous genes responsible for ammonium assimilation and glutamate biosynthesis in Saccharomyces cerevisiae.
    Avendaño A, Riego L, DeLuna A, Aranda C, Romero G, Ishida C, Vázquez-Acevedo M, Rodarte B, Recillas-Targa F, Valenzuela L, Zonszein S, González A.
    Mol Microbiol; 2005 Jul 24; 57(1):291-305. PubMed ID: 15948967
    [Abstract] [Full Text] [Related]

  • 10. Identification of regulatory network topological units coordinating the genome-wide transcriptional response to glucose in Escherichia coli.
    Gutierrez-Ríos RM, Freyre-Gonzalez JA, Resendis O, Collado-Vides J, Saier M, Gosset G.
    BMC Microbiol; 2007 Jun 08; 7():53. PubMed ID: 17559662
    [Abstract] [Full Text] [Related]

  • 11. Systems biology of energy homeostasis in yeast.
    Zhang J, Vemuri G, Nielsen J.
    Curr Opin Microbiol; 2010 Jun 08; 13(3):382-8. PubMed ID: 20439164
    [Abstract] [Full Text] [Related]

  • 12. Transcriptional regulation of the one-carbon metabolism regulon in Saccharomyces cerevisiae by Bas1p.
    Subramanian M, Qiao WB, Khanam N, Wilkins O, Der SD, Lalich JD, Bognar AL.
    Mol Microbiol; 2005 Jul 08; 57(1):53-69. PubMed ID: 15948949
    [Abstract] [Full Text] [Related]

  • 13. Prospects of yeast systems biology for human health: integrating lipid, protein and energy metabolism.
    Petranovic D, Tyo K, Vemuri GN, Nielsen J.
    FEMS Yeast Res; 2010 Dec 08; 10(8):1046-59. PubMed ID: 20977625
    [Abstract] [Full Text] [Related]

  • 14. Identification of direct and indirect targets of the Gln3 and Gat1 activators by transcriptional profiling in response to nitrogen availability in the short and long term.
    Scherens B, Feller A, Vierendeels F, Messenguy F, Dubois E.
    FEMS Yeast Res; 2006 Aug 08; 6(5):777-91. PubMed ID: 16879428
    [Abstract] [Full Text] [Related]

  • 15. Sense and sensibility: nutritional response and signal integration in yeast.
    Schneper L, Düvel K, Broach JR.
    Curr Opin Microbiol; 2004 Dec 08; 7(6):624-30. PubMed ID: 15556035
    [Abstract] [Full Text] [Related]

  • 16. Nitrogen catabolite repression in Saccharomyces cerevisiae during wine fermentations.
    Beltran G, Novo M, Rozès N, Mas A, Guillamón JM.
    FEMS Yeast Res; 2004 Mar 08; 4(6):625-32. PubMed ID: 15040951
    [Abstract] [Full Text] [Related]

  • 17. Evaluation of control mechanisms for Saccharomyces cerevisiae central metabolic reactions using metabolome data of eight single-gene deletion mutants.
    Shirai T, Matsuda F, Okamoto M, Kondo A.
    Appl Microbiol Biotechnol; 2013 Apr 08; 97(8):3569-77. PubMed ID: 23224404
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Systems biology: Reverse engineering the cell.
    Ingolia NT, Weissman JS.
    Nature; 2008 Aug 28; 454(7208):1059-62. PubMed ID: 18756243
    [No Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 6.