These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


105 related items for PubMed ID: 22491778

  • 21. Magnesium ions in yeast: setting free the metabolism from glucose catabolite repression.
    Barros de Souza R, Silva RK, Ferreira DS, de Sá Leitão Paiva Junior S, de Barros Pita W, de Morais Junior MA.
    Metallomics; 2016 Nov 09; 8(11):1193-1203. PubMed ID: 27714092
    [Abstract] [Full Text] [Related]

  • 22. D-Serine exposure resulted in gene expression changes indicative of activation of fibrogenic pathways and down-regulation of energy metabolism and oxidative stress response.
    Soto A, DelRaso NJ, Schlager JJ, Chan VT.
    Toxicology; 2008 Jan 14; 243(1-2):177-92. PubMed ID: 18061331
    [Abstract] [Full Text] [Related]

  • 23. An integrated model of glucose and galactose metabolism regulated by the GAL genetic switch.
    Demir O, Aksan Kurnaz I.
    Comput Biol Chem; 2006 Jun 14; 30(3):179-92. PubMed ID: 16679066
    [Abstract] [Full Text] [Related]

  • 24. Dynamic responses of reserve carbohydrate metabolism under carbon and nitrogen limitations in Saccharomyces cerevisiae.
    Parrou JL, Enjalbert B, Plourde L, Bauche A, Gonzalez B, François J.
    Yeast; 1999 Feb 14; 15(3):191-203. PubMed ID: 10077186
    [Abstract] [Full Text] [Related]

  • 25. Gln3-Gcn4 hybrid transcriptional activator determines catabolic and biosynthetic gene expression in the yeast Saccharomyces cerevisiae.
    Hernández H, Aranda C, Riego L, González A.
    Biochem Biophys Res Commun; 2011 Jan 21; 404(3):859-64. PubMed ID: 21184740
    [Abstract] [Full Text] [Related]

  • 26. Long-term adaptation of Saccharomyces cerevisiae to the burden of recombinant insulin production.
    Kazemi Seresht A, Cruz AL, de Hulster E, Hebly M, Palmqvist EA, van Gulik W, Daran JM, Pronk J, Olsson L.
    Biotechnol Bioeng; 2013 Oct 21; 110(10):2749-63. PubMed ID: 23568816
    [Abstract] [Full Text] [Related]

  • 27. Multilevel regulation of growth rate in yeast revealed using systems biology.
    Ramanathan A, Schreiber SL.
    J Biol; 2007 Oct 21; 6(2):3. PubMed ID: 17472733
    [Abstract] [Full Text] [Related]

  • 28. Analysis of the genomic response of a wine yeast to rehydration and inoculation.
    Rossignol T, Postaire O, Storaï J, Blondin B.
    Appl Microbiol Biotechnol; 2006 Aug 21; 71(5):699-712. PubMed ID: 16607525
    [Abstract] [Full Text] [Related]

  • 29. Computational identification of altered metabolism using gene expression and metabolic pathways.
    Nam H, Lee J, Lee D.
    Biotechnol Bioeng; 2009 Jul 01; 103(4):835-43. PubMed ID: 19378263
    [Abstract] [Full Text] [Related]

  • 30. Regulation of sporulation in the yeast Saccharomyces cerevisiae.
    Piekarska I, Rytka J, Rempola B.
    Acta Biochim Pol; 2010 Jul 01; 57(3):241-50. PubMed ID: 20842291
    [Abstract] [Full Text] [Related]

  • 31. Glucose- and nitrogen sensing and regulatory mechanisms in Saccharomyces cerevisiae.
    Rødkaer SV, Faergeman NJ.
    FEMS Yeast Res; 2014 Aug 01; 14(5):683-96. PubMed ID: 24738657
    [Abstract] [Full Text] [Related]

  • 32. Xylose and some non-sugar carbon sources cause catabolite repression in Saccharomyces cerevisiae.
    Belinchón MM, Gancedo JM.
    Arch Microbiol; 2003 Oct 01; 180(4):293-7. PubMed ID: 12955310
    [Abstract] [Full Text] [Related]

  • 33. Transient responses and adaptation to steady state in a eukaryotic gene regulation system.
    Braun E, Brenner N.
    Phys Biol; 2004 Jun 01; 1(1-2):67-76. PubMed ID: 16204824
    [Abstract] [Full Text] [Related]

  • 34. Inferring causal metabolic signals that regulate the dynamic TORC1-dependent transcriptome.
    Oliveira AP, Dimopoulos S, Busetto AG, Christen S, Dechant R, Falter L, Haghir Chehreghani M, Jozefczuk S, Ludwig C, Rudroff F, Schulz JC, González A, Soulard A, Stracka D, Aebersold R, Buhmann JM, Hall MN, Peter M, Sauer U, Stelling J.
    Mol Syst Biol; 2015 Apr 17; 11(4):802. PubMed ID: 25888284
    [Abstract] [Full Text] [Related]

  • 35. Role of nitrogen and carbon transport, regulation, and metabolism genes for Saccharomyces cerevisiae survival in vivo.
    Kingsbury JM, Goldstein AL, McCusker JH.
    Eukaryot Cell; 2006 May 17; 5(5):816-24. PubMed ID: 16682459
    [Abstract] [Full Text] [Related]

  • 36. Inferring differences in the distribution of reaction rates across conditions.
    Hendrickx DM, Hoefsloot HC, Hendriks MM, Vis DJ, Canelas AB, Teusink B, Smilde AK.
    Mol Biosyst; 2012 Sep 17; 8(9):2415-23. PubMed ID: 22782002
    [Abstract] [Full Text] [Related]

  • 37. A common bacterial metabolite elicits prion-based bypass of glucose repression.
    Garcia DM, Dietrich D, Clardy J, Jarosz DF.
    Elife; 2016 Nov 29; 5():. PubMed ID: 27906649
    [Abstract] [Full Text] [Related]

  • 38. Transcriptional remodeling in response to transfer upon carbon-limited or metformin-supplemented media in S. cerevisiae and its effect on chronological life span.
    Borklu-Yucel E, Eraslan S, Ulgen KO.
    Appl Microbiol Biotechnol; 2015 Aug 29; 99(16):6775-89. PubMed ID: 26099330
    [Abstract] [Full Text] [Related]

  • 39. The sensing of nutritional status and the relationship to filamentous growth in Saccharomyces cerevisiae.
    Gagiano M, Bauer FF, Pretorius IS.
    FEMS Yeast Res; 2002 Dec 29; 2(4):433-70. PubMed ID: 12702263
    [Abstract] [Full Text] [Related]

  • 40. [Carbon catabolite repression or how bacteria choose their favorite sugars].
    Galinier A.
    Med Sci (Paris); 2018 Dec 29; 34(6-7):531-539. PubMed ID: 30067204
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 6.