These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


225 related items for PubMed ID: 22492169

  • 21. Relative importance of climate and mountain pine beetle outbreaks on the occurrence of large wildfires in the western USA.
    Mietkiewicz N, Kulakowski D.
    Ecol Appl; 2016 Dec; 26(8):2523-2535. PubMed ID: 27787956
    [Abstract] [Full Text] [Related]

  • 22. Influences of secondary disturbances on lodgepole pine stand development in Rocky Mountain National Park.
    Sibold JS, Veblen TT, Chipko K, Lawson L, Mathis E, Scott J.
    Ecol Appl; 2007 Sep; 17(6):1638-55. PubMed ID: 17913129
    [Abstract] [Full Text] [Related]

  • 23. Frequent fire alters nitrogen transformations in ponderosa pine stands of the inland northwest.
    DeLuca TH, Sala A.
    Ecology; 2006 Oct; 87(10):2511-22. PubMed ID: 17089660
    [Abstract] [Full Text] [Related]

  • 24. Influence of recent bark beetle outbreak on fire severity and postfire tree regeneration in montane Douglas-fir forests.
    Harvey BJ, Donato DC, Romme WH, Turner MG.
    Ecology; 2013 Nov; 94(11):2475-86. PubMed ID: 24400499
    [Abstract] [Full Text] [Related]

  • 25. Rapid Increases in forest understory diversity and productivity following a mountain pine beetle (Dendroctonus ponderosae) outbreak in pine forests.
    Pec GJ, Karst J, Sywenky AN, Cigan PW, Erbilgin N, Simard SW, Cahill JF.
    PLoS One; 2015 Nov; 10(4):e0124691. PubMed ID: 25859663
    [Abstract] [Full Text] [Related]

  • 26. Fire severity and tree regeneration following bark beetle outbreaks: the role of outbreak stage and burning conditions.
    Harvey BJ, Donato DC, Romme WH, Turner MG.
    Ecol Appl; 2014 Nov; 24(7):1608-25. PubMed ID: 29210226
    [Abstract] [Full Text] [Related]

  • 27. Co-occurring species differ in tree-ring delta(18)O trends.
    Marshall JD, Monserud RA.
    Tree Physiol; 2006 Aug; 26(8):1055-66. PubMed ID: 16651255
    [Abstract] [Full Text] [Related]

  • 28. Sapwood Stored Resources Decline in Whitebark and Lodgepole Pines Attacked by Mountain Pine Beetles (Coleoptera: Curculionidae).
    Lahr EC, Sala A.
    Environ Entomol; 2016 Dec; 45(6):1463-1475. PubMed ID: 28028093
    [Abstract] [Full Text] [Related]

  • 29. Impacts of bark beetle-induced tree mortality on pyrogenic carbon production and heat output in wildfires for fire modeling and global carbon accounting.
    Howell A, Bretfeld M, Belmont E.
    Sci Total Environ; 2021 Mar 15; 760():144149. PubMed ID: 33341616
    [Abstract] [Full Text] [Related]

  • 30. Looking beyond the mean: Drivers of variability in postfire stand development of conifers in Greater Yellowstone.
    Braziunas KH, Hansen WD, Seidl R, Rammer W, Turner MG.
    For Ecol Manage; 2018 Dec 15; 430():460-471. PubMed ID: 35645456
    [Abstract] [Full Text] [Related]

  • 31. Decomposition and nitrogen dynamics of (15)N-labeled leaf, root, and twig litter in temperate coniferous forests.
    van Huysen TL, Harmon ME, Perakis SS, Chen H.
    Oecologia; 2013 Dec 15; 173(4):1563-73. PubMed ID: 23884664
    [Abstract] [Full Text] [Related]

  • 32. Root growth and water use efficiency of Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) and lodgepole pine (Pinus contorta Dougl.) seedlings.
    Smit J, Van Den Driessche R.
    Tree Physiol; 1992 Dec 15; 11(4):401-10. PubMed ID: 14969945
    [Abstract] [Full Text] [Related]

  • 33. Landscape variation in tree regeneration and snag fall drive fuel loads in 24-year old post-fire lodgepole pine forests.
    Nelson KN, Turner MG, Romme WH, Tinker DB.
    Ecol Appl; 2016 Dec 15; 26(8):2422-2436. PubMed ID: 27875007
    [Abstract] [Full Text] [Related]

  • 34. Forest recovery following synchronous outbreaks of spruce and western balsam bark beetle is slowed by ungulate browsing.
    Andrus RA, Hart SJ, Veblen TT.
    Ecology; 2020 May 15; 101(5):e02998. PubMed ID: 32012254
    [Abstract] [Full Text] [Related]

  • 35. Mountain Pine Beetle Dynamics and Reproductive Success in Post-Fire Lodgepole and Ponderosa Pine Forests in Northeastern Utah.
    Lerch AP, Pfammatter JA, Bentz BJ, Raffa KF.
    PLoS One; 2016 May 15; 11(10):e0164738. PubMed ID: 27783632
    [Abstract] [Full Text] [Related]

  • 36. Differential patterns of nitrogen and δ15N in soil and foliar along two urbanized rivers in a subtropical coastal city of southern China.
    Mgelwa AS, Hu YL, Liu JF, Qiu Q, Liu Z, Yannick Ngaba MJ.
    Environ Pollut; 2019 Jan 15; 244():907-914. PubMed ID: 30469285
    [Abstract] [Full Text] [Related]

  • 37. Post-fire spatial patterns of soil nitrogen mineralization and microbial abundance.
    Smithwick EA, Naithani KJ, Balser TC, Romme WH, Turner MG.
    PLoS One; 2012 Jan 15; 7(11):e50597. PubMed ID: 23226324
    [Abstract] [Full Text] [Related]

  • 38.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 39. Seed release in serotinous lodgepole pine forests after mountain pine beetle outbreak.
    Teste FP, Lieffers VJ, Landhausser SM.
    Ecol Appl; 2011 Jan 15; 21(1):150-62. PubMed ID: 21516894
    [Abstract] [Full Text] [Related]

  • 40. Spatiotemporal patterns of mountain pine beetle activity in the southern Rocky Mountains.
    Chapman TB, Veblen TT, Schoennagel T.
    Ecology; 2012 Oct 15; 93(10):2175-85. PubMed ID: 23185879
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 12.