These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


211 related items for PubMed ID: 22496064

  • 1. Facile fabrication of thermo-responsive and reduction-sensitive polymeric micelles for anticancer drug delivery.
    Jiang X, Li L, Liu J, Hennink WE, Zhuo R.
    Macromol Biosci; 2012 May; 12(5):703-11. PubMed ID: 22496064
    [Abstract] [Full Text] [Related]

  • 2. Thermosensitive and biodegradable polymeric micelles for paclitaxel delivery.
    Soga O, van Nostrum CF, Fens M, Rijcken CJ, Schiffelers RM, Storm G, Hennink WE.
    J Control Release; 2005 Mar 21; 103(2):341-53. PubMed ID: 15763618
    [Abstract] [Full Text] [Related]

  • 3. Reduction-responsive polymeric micelles for anticancer drug delivery.
    Jiang X, Li L, Liu J, Zhuo R.
    J Control Release; 2011 Nov 30; 152 Suppl 1():e36-7. PubMed ID: 22195910
    [No Abstract] [Full Text] [Related]

  • 4. Fabrication of biodegradable micelles with reduction-triggered release of 6-mercaptopurine profile based on disulfide-linked graft copolymer conjugate.
    Zhang X, Du F, Huang J, Lu W, Liu S, Yu J.
    Colloids Surf B Biointerfaces; 2012 Dec 01; 100():155-62. PubMed ID: 22766292
    [Abstract] [Full Text] [Related]

  • 5. Core-crosslinked pH-sensitive degradable micelles: A promising approach to resolve the extracellular stability versus intracellular drug release dilemma.
    Wu Y, Chen W, Meng F, Wang Z, Cheng R, Deng C, Liu H, Zhong Z.
    J Control Release; 2012 Dec 28; 164(3):338-45. PubMed ID: 22800578
    [Abstract] [Full Text] [Related]

  • 6. Fabrication of biodegradable micelles with sheddable poly(ethylene glycol) shells as the carrier of 7-ethyl-10-hydroxy-camptothecin.
    Guo Q, Luo P, Luo Y, Du F, Lu W, Liu S, Huang J, Yu J.
    Colloids Surf B Biointerfaces; 2012 Dec 01; 100():138-45. PubMed ID: 22766290
    [Abstract] [Full Text] [Related]

  • 7. Reduction-responsive disassemblable core-cross-linked micelles based on poly(ethylene glycol)-b-poly(N-2-hydroxypropyl methacrylamide)-lipoic acid conjugates for triggered intracellular anticancer drug release.
    Wei R, Cheng L, Zheng M, Cheng R, Meng F, Deng C, Zhong Z.
    Biomacromolecules; 2012 Aug 13; 13(8):2429-38. PubMed ID: 22746534
    [Abstract] [Full Text] [Related]

  • 8. Synthesis and characterization of a novel polydepsipeptide contained tri-block copolymer (mPEG-PLLA-PMMD) as self-assembly micelle delivery system for paclitaxel.
    Zhao Y, Li J, Yu H, Wang G, Liu W.
    Int J Pharm; 2012 Jul 01; 430(1-2):282-91. PubMed ID: 22484705
    [Abstract] [Full Text] [Related]

  • 9. Novel self-assembling PEG-p-(CL-co-TMC) polymeric micelles as safe and effective delivery system for paclitaxel.
    Danhier F, Magotteaux N, Ucakar B, Lecouturier N, Brewster M, Préat V.
    Eur J Pharm Biopharm; 2009 Oct 01; 73(2):230-8. PubMed ID: 19577643
    [Abstract] [Full Text] [Related]

  • 10. Triple-stimuli (pH/thermo/reduction) sensitive copolymers for intracellular drug delivery.
    Huang X, Jiang X, Yang Q, Chu Y, Zhang G, Yang B, Zhuo R.
    J Mater Chem B; 2013 Apr 07; 1(13):1860-1868. PubMed ID: 32261152
    [Abstract] [Full Text] [Related]

  • 11. Folate-decorated thermoresponsive micelles based on star-shaped amphiphilic block copolymers for efficient intracellular release of anticancer drugs.
    Rezaei SJ, Nabid MR, Niknejad H, Entezami AA.
    Int J Pharm; 2012 Nov 01; 437(1-2):70-9. PubMed ID: 22884832
    [Abstract] [Full Text] [Related]

  • 12. Cyclic RGD conjugated poly(ethylene glycol)-co-poly(lactic acid) micelle enhances paclitaxel anti-glioblastoma effect.
    Zhan C, Gu B, Xie C, Li J, Liu Y, Lu W.
    J Control Release; 2010 Apr 02; 143(1):136-42. PubMed ID: 20056123
    [Abstract] [Full Text] [Related]

  • 13. Role of cellular uptake in the reversal of multidrug resistance by PEG-b-PLA polymeric micelles.
    Xiao L, Xiong X, Sun X, Zhu Y, Yang H, Chen H, Gan L, Xu H, Yang X.
    Biomaterials; 2011 Aug 02; 32(22):5148-57. PubMed ID: 21546083
    [Abstract] [Full Text] [Related]

  • 14. Redox-sensitive micelles self-assembled from amphiphilic hyaluronic acid-deoxycholic acid conjugates for targeted intracellular delivery of paclitaxel.
    Li J, Huo M, Wang J, Zhou J, Mohammad JM, Zhang Y, Zhu Q, Waddad AY, Zhang Q.
    Biomaterials; 2012 Mar 02; 33(7):2310-20. PubMed ID: 22166223
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Fusiform micelles from nonlinear poly(ethylene glycol)/polylactide copolymers as biodegradable drug carriers.
    Li T, Han R, Wang M, Liu C, Jing X, Huang Y.
    Macromol Biosci; 2011 Nov 10; 11(11):1570-8. PubMed ID: 22167874
    [Abstract] [Full Text] [Related]

  • 17. Galactose-decorated cross-linked biodegradable poly(ethylene glycol)-b-poly(ε-caprolactone) block copolymer micelles for enhanced hepatoma-targeting delivery of paclitaxel.
    Yang R, Meng F, Ma S, Huang F, Liu H, Zhong Z.
    Biomacromolecules; 2011 Aug 08; 12(8):3047-55. PubMed ID: 21726090
    [Abstract] [Full Text] [Related]

  • 18. Oxime linkage: a robust tool for the design of pH-sensitive polymeric drug carriers.
    Jin Y, Song L, Su Y, Zhu L, Pang Y, Qiu F, Tong G, Yan D, Zhu B, Zhu X.
    Biomacromolecules; 2011 Oct 10; 12(10):3460-8. PubMed ID: 21863891
    [Abstract] [Full Text] [Related]

  • 19. Thermoresponsive nanostructured polycarbonate block copolymers as biodegradable therapeutic delivery carriers.
    Kim SH, Tan JP, Fukushima K, Nederberg F, Yang YY, Waymouth RM, Hedrick JL.
    Biomaterials; 2011 Aug 10; 32(23):5505-14. PubMed ID: 21529935
    [Abstract] [Full Text] [Related]

  • 20. Preparation and in vitro properties of redox-responsive polymeric nanoparticles for paclitaxel delivery.
    Song N, Liu W, Tu Q, Liu R, Zhang Y, Wang J.
    Colloids Surf B Biointerfaces; 2011 Oct 15; 87(2):454-63. PubMed ID: 21719259
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.