These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


234 related items for PubMed ID: 22517678

  • 1. Hexokinase II knockdown results in exaggerated cardiac hypertrophy via increased ROS production.
    Wu R, Wyatt E, Chawla K, Tran M, Ghanefar M, Laakso M, Epting CL, Ardehali H.
    EMBO Mol Med; 2012 Jul; 4(7):633-46. PubMed ID: 22517678
    [Abstract] [Full Text] [Related]

  • 2. Cardiac-specific hexokinase 2 overexpression attenuates hypertrophy by increasing pentose phosphate pathway flux.
    McCommis KS, Douglas DL, Krenz M, Baines CP.
    J Am Heart Assoc; 2013 Nov 04; 2(6):e000355. PubMed ID: 24190878
    [Abstract] [Full Text] [Related]

  • 3. Melatonin alleviates angiotensin-II-induced cardiac hypertrophy via activating MICU1 pathway.
    Yang Y, Du J, Xu R, Shen Y, Yang D, Li D, Hu H, Pei H, Yang Y.
    Aging (Albany NY); 2020 Nov 26; 13(1):493-515. PubMed ID: 33259334
    [Abstract] [Full Text] [Related]

  • 4. Reduction in hexokinase II levels results in decreased cardiac function and altered remodeling after ischemia/reperfusion injury.
    Wu R, Smeele KM, Wyatt E, Ichikawa Y, Eerbeek O, Sun L, Chawla K, Hollmann MW, Nagpal V, Heikkinen S, Laakso M, Jujo K, Wasserstrom JA, Zuurbier CJ, Ardehali H.
    Circ Res; 2011 Jan 07; 108(1):60-9. PubMed ID: 21071708
    [Abstract] [Full Text] [Related]

  • 5. Mitochondrial reprogramming induced by CaMKIIδ mediates hypertrophy decompensation.
    Westenbrink BD, Ling H, Divakaruni AS, Gray CB, Zambon AC, Dalton ND, Peterson KL, Gu Y, Matkovich SJ, Murphy AN, Miyamoto S, Dorn GW, Heller Brown J.
    Circ Res; 2015 Feb 27; 116(5):e28-39. PubMed ID: 25605649
    [Abstract] [Full Text] [Related]

  • 6. Allicin protects against cardiac hypertrophy and fibrosis via attenuating reactive oxygen species-dependent signaling pathways.
    Liu C, Cao F, Tang QZ, Yan L, Dong YG, Zhu LH, Wang L, Bian ZY, Li H.
    J Nutr Biochem; 2010 Dec 27; 21(12):1238-50. PubMed ID: 20185286
    [Abstract] [Full Text] [Related]

  • 7. Regulation of glycolysis and expression of glucose metabolism-related genes by reactive oxygen species in contracting skeletal muscle cells.
    Pinheiro CH, Silveira LR, Nachbar RT, Vitzel KF, Curi R.
    Free Radic Biol Med; 2010 Apr 01; 48(7):953-60. PubMed ID: 20080177
    [Abstract] [Full Text] [Related]

  • 8. Dissociation of HKII in retinal epithelial cells induces oxidative stress injury in the retina.
    Chu L, Xiao L, Xu B, Xu J.
    Int J Mol Med; 2019 Oct 01; 44(4):1377-1387. PubMed ID: 31432102
    [Abstract] [Full Text] [Related]

  • 9. Knockout of VDAC1 in H9c2 Cells Promotes Oxidative Stress-Induced Cell Apoptosis through Decreased Mitochondrial Hexokinase II Binding and Enhanced Glycolytic Stress.
    Yang M, Sun J, Stowe DF, Tajkhorshid E, Kwok WM, Camara AKS.
    Cell Physiol Biochem; 2020 Sep 09; 54(5):853-874. PubMed ID: 32901466
    [Abstract] [Full Text] [Related]

  • 10. Ca2+-Dependent NOX5 (NADPH Oxidase 5) Exaggerates Cardiac Hypertrophy Through Reactive Oxygen Species Production.
    Zhao GJ, Zhao CL, Ouyang S, Deng KQ, Zhu L, Montezano AC, Zhang C, Hu F, Zhu XY, Tian S, Liu X, Ji YX, Zhang P, Zhang XJ, She ZG, Touyz RM, Li H.
    Hypertension; 2020 Sep 09; 76(3):827-838. PubMed ID: 32683902
    [Abstract] [Full Text] [Related]

  • 11. Hexokinase II acts through UCP3 to suppress mitochondrial reactive oxygen species production and maintain aerobic respiration.
    Mailloux RJ, Dumouchel T, Aguer C, deKemp R, Beanlands R, Harper ME.
    Biochem J; 2011 Jul 15; 437(2):301-11. PubMed ID: 21554247
    [Abstract] [Full Text] [Related]

  • 12. Lycopene protects against pressure overload-induced cardiac hypertrophy by attenuating oxidative stress.
    Zeng J, Zhao J, Dong B, Cai X, Jiang J, Xue R, Yao F, Dong Y, Liu C.
    J Nutr Biochem; 2019 Apr 15; 66():70-78. PubMed ID: 30772766
    [Abstract] [Full Text] [Related]

  • 13. [Oxidative stress and calcium/calmodulin-dependent protein kinase II contribute to the development of sustained β adrenergic receptor-stimulated cardiac hypertrophy in rats].
    Liu YL, Liu B, Qu YY, Chai HJ, Li R, Zhang L.
    Sheng Li Xue Bao; 2013 Feb 25; 65(1):1-7. PubMed ID: 23426507
    [Abstract] [Full Text] [Related]

  • 14. Antioxidant N-acetylcysteine inhibits maladaptive myocyte autophagy in pressure overload induced cardiac remodeling in rats.
    Li B, Sun Y, Wang JP, Chi RF, Wang K, Yang ZJ, Qin FZ, Fan B.
    Eur J Pharmacol; 2018 Nov 15; 839():47-56. PubMed ID: 30194941
    [Abstract] [Full Text] [Related]

  • 15. Reducing mitochondrial bound hexokinase II mediates transition from non-injurious into injurious ischemia/reperfusion of the intact heart.
    Nederlof R, Gürel-Gurevin E, Eerbeek O, Xie C, Deijs GS, Konkel M, Hu J, Weber NC, Schumacher CA, Baartscheer A, Mik EG, Hollmann MW, Akar FG, Zuurbier CJ.
    J Physiol Biochem; 2016 Aug 15; 73(3):323-333. PubMed ID: 28258543
    [Abstract] [Full Text] [Related]

  • 16. Palmitic acid, but not high-glucose, induced myocardial apoptosis is alleviated by N‑acetylcysteine due to attenuated mitochondrial-derived ROS accumulation-induced endoplasmic reticulum stress.
    He Y, Zhou L, Fan Z, Liu S, Fang W.
    Cell Death Dis; 2018 May 01; 9(5):568. PubMed ID: 29752433
    [Abstract] [Full Text] [Related]

  • 17. N-acetylcysteine attenuates myocardial dysfunction and postischemic injury by restoring caveolin-3/eNOS signaling in diabetic rats.
    Su W, Zhang Y, Zhang Q, Xu J, Zhan L, Zhu Q, Lian Q, Liu H, Xia ZY, Xia Z, Lei S.
    Cardiovasc Diabetol; 2016 Oct 12; 15(1):146. PubMed ID: 27733157
    [Abstract] [Full Text] [Related]

  • 18. Acute detachment of hexokinase II from mitochondria modestly increases oxygen consumption of the intact mouse heart.
    Nederlof R, Denis S, Lauzier B, Rosiers CD, Laakso M, Hagen J, Argmann C, Wanders R, Houtkooper RH, Hollmann MW, Houten SM, Zuurbier CJ.
    Metabolism; 2017 Jul 12; 72():66-74. PubMed ID: 28641785
    [Abstract] [Full Text] [Related]

  • 19. BRD4 blockage alleviates pathological cardiac hypertrophy through the suppression of fibrosis and inflammation via reducing ROS generation.
    Zhu W, Wu RD, Lv YG, Liu YM, Huang H, Xu JQ.
    Biomed Pharmacother; 2020 Jan 12; 121():109368. PubMed ID: 31707348
    [Abstract] [Full Text] [Related]

  • 20. Adiponectin mediates cardioprotection in oxidative stress-induced cardiac myocyte remodeling.
    Essick EE, Ouchi N, Wilson RM, Ohashi K, Ghobrial J, Shibata R, Pimentel DR, Sam F.
    Am J Physiol Heart Circ Physiol; 2011 Sep 12; 301(3):H984-93. PubMed ID: 21666115
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 12.