These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
138 related items for PubMed ID: 22521736
1. Supporting role of lysine 13 and glutamate 16 in the acid-base mechanism of saccharopine dehydrogenase from Saccharomyces cerevisiae. Kumar VP, West AH, Cook PF. Arch Biochem Biophys; 2012 Jun 01; 522(1):57-61. PubMed ID: 22521736 [Abstract] [Full Text] [Related]
2. Evidence in support of lysine 77 and histidine 96 as acid-base catalytic residues in saccharopine dehydrogenase from Saccharomyces cerevisiae. Kumar VP, Thomas LM, Bobyk KD, Andi B, Cook PF, West AH. Biochemistry; 2012 Jan 31; 51(4):857-66. PubMed ID: 22243403 [Abstract] [Full Text] [Related]
3. The oxidation state of active site thiols determines activity of saccharopine dehydrogenase at low pH. Bobyk KD, Kim SG, Kumar VP, Kim SK, West AH, Cook PF. Arch Biochem Biophys; 2011 Sep 15; 513(2):71-80. PubMed ID: 21798231 [Abstract] [Full Text] [Related]
4. A proposed proton shuttle mechanism for saccharopine dehydrogenase from Saccharomyces cerevisiae. Xu H, Alguindigue SS, West AH, Cook PF. Biochemistry; 2007 Jan 23; 46(3):871-82. PubMed ID: 17223709 [Abstract] [Full Text] [Related]
5. Overall kinetic mechanism of saccharopine dehydrogenase from Saccharomyces cerevisiae. Xu H, West AH, Cook PF. Biochemistry; 2006 Oct 03; 45(39):12156-66. PubMed ID: 17002315 [Abstract] [Full Text] [Related]
6. Glutamates 78 and 122 in the active site of saccharopine dehydrogenase contribute to reactant binding and modulate the basicity of the acid-base catalysts. Ekanayake DK, Andi B, Bobyk KD, West AH, Cook PF. J Biol Chem; 2010 Jul 02; 285(27):20756-68. PubMed ID: 20427272 [Abstract] [Full Text] [Related]
7. Chemical mechanism of saccharopine reductase from Saccharomyces cerevisiae. Vashishtha AK, West AH, Cook PF. Biochemistry; 2009 Jun 30; 48(25):5899-907. PubMed ID: 19449898 [Abstract] [Full Text] [Related]
9. Crystal structures of ligand-bound saccharopine dehydrogenase from Saccharomyces cerevisiae. Andi B, Xu H, Cook PF, West AH. Biochemistry; 2007 Nov 06; 46(44):12512-21. PubMed ID: 17939687 [Abstract] [Full Text] [Related]
10. Structural studies of the final enzyme in the alpha-aminoadipate pathway-saccharopine dehydrogenase from Saccharomyces cerevisiae. Burk DL, Hwang J, Kwok E, Marrone L, Goodfellow V, Dmitrienko GI, Berghuis AM. J Mol Biol; 2007 Oct 26; 373(3):745-54. PubMed ID: 17854830 [Abstract] [Full Text] [Related]
11. Probing the chemical mechanism of saccharopine reductase from Saccharomyces cerevisiae using site-directed mutagenesis. Vashishtha AK, West AH, Cook PF. Arch Biochem Biophys; 2015 Oct 15; 584():98-106. PubMed ID: 26342457 [Abstract] [Full Text] [Related]
12. Overall kinetic mechanism of saccharopine dehydrogenase (L-glutamate forming) from Saccharomyces cerevisiae. Vashishtha AK, West AH, Cook PF. Biochemistry; 2008 May 13; 47(19):5417-23. PubMed ID: 18416559 [Abstract] [Full Text] [Related]
14. Evidence for a catalytic dyad in the active site of homocitrate synthase from Saccharomyces cerevisiae. Qian J, Khandogin J, West AH, Cook PF. Biochemistry; 2008 Jul 01; 47(26):6851-8. PubMed ID: 18533686 [Abstract] [Full Text] [Related]
15. Site-directed mutagenesis as a probe of the acid-base catalytic mechanism of homoisocitrate dehydrogenase from Saccharomyces cerevisiae. Lin Y, West AH, Cook PF. Biochemistry; 2009 Aug 04; 48(30):7305-12. PubMed ID: 19530703 [Abstract] [Full Text] [Related]
16. Acid-base chemical mechanism of homocitrate synthase from Saccharomyces cerevisiae. Qian J, West AH, Cook PF. Biochemistry; 2006 Oct 03; 45(39):12136-43. PubMed ID: 17002313 [Abstract] [Full Text] [Related]
17. Determinants of substrate specificity for saccharopine dehydrogenase from Saccharomyces cerevisiae. Xu H, West AH, Cook PF. Biochemistry; 2007 Jun 26; 46(25):7625-36. PubMed ID: 17542618 [Abstract] [Full Text] [Related]
18. Importance of the gamma-carboxyl group of glutamate-462 of the large alpha-subunit for the catalytic function and the stability of the multienzyme complex of fatty acid oxidation from Escherichia coli. He XY, Deng H, Yang SY. Biochemistry; 1997 Jan 07; 36(1):261-8. PubMed ID: 8993342 [Abstract] [Full Text] [Related]
19. Theoretical study on the proton shuttle mechanism of saccharopine dehydrogenase. Sheng X, Gao J, Liu Y, Liu C. J Mol Graph Model; 2013 Jul 07; 44():17-25. PubMed ID: 23732302 [Abstract] [Full Text] [Related]