These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
218 related items for PubMed ID: 2252221
1. Segregation of fate during cleavage of frog (Xenopus laevis) blastomeres. Moody SA, Kline MJ. Anat Embryol (Berl); 1990; 182(4):347-62. PubMed ID: 2252221 [Abstract] [Full Text] [Related]
2. The retinal fate of Xenopus cleavage stage progenitors is dependent upon blastomere position and competence: studies of normal and regulated clones. Huang S, Moody SA. J Neurosci; 1993 Aug; 13(8):3193-210. PubMed ID: 8340804 [Abstract] [Full Text] [Related]
3. Fates of the blastomeres of the 16-cell stage Xenopus embryo. Moody SA. Dev Biol; 1987 Feb; 119(2):560-78. PubMed ID: 3803718 [Abstract] [Full Text] [Related]
4. Fates of the blastomeres of the 32-cell-stage Xenopus embryo. Moody SA. Dev Biol; 1987 Aug; 122(2):300-19. PubMed ID: 3596014 [Abstract] [Full Text] [Related]
5. Changes in states of commitment of single animal pole blastomeres of Xenopus laevis. Snape A, Wylie CC, Smith JC, Heasman J. Dev Biol; 1987 Feb; 119(2):503-10. PubMed ID: 3803715 [Abstract] [Full Text] [Related]
6. Autonomous differentiation of dorsal axial structures from an animal cap cleavage stage blastomere in Xenopus. Gallagher BC, Hainski AM, Moody SA. Development; 1991 Aug; 112(4):1103-14. PubMed ID: 1935699 [Abstract] [Full Text] [Related]
7. Competence prepattern in the animal hemisphere of the 8-cell-stage Xenopus embryo. Kinoshita K, Bessho T, Asashima M. Dev Biol; 1993 Nov; 160(1):276-84. PubMed ID: 8224543 [Abstract] [Full Text] [Related]
8. Lithium changes the ectodermal fate of individual frog blastomeres because it causes ectopic neural plate formation. Klein SL, Moody SA. Development; 1989 Jul; 106(3):599-610. PubMed ID: 2557198 [Abstract] [Full Text] [Related]
9. Blastomeres show differential fate changes in 8-cell Xenopus laevis embryos that are rotated 90 degrees before first cleavage. Huang S, Johnson KE, Wang HZ. Dev Growth Differ; 1998 Apr; 40(2):189-98. PubMed ID: 9572361 [Abstract] [Full Text] [Related]
10. The competence of Xenopus blastomeres to produce neural and retinal progeny is repressed by two endo-mesoderm promoting pathways. Yan B, Moody SA. Dev Biol; 2007 May 01; 305(1):103-19. PubMed ID: 17428460 [Abstract] [Full Text] [Related]
13. The four animal blastomeres of the eight-cell stage of Xenopus laevis are intrinsically capable of differentiating into dorsal mesodermal derivatives. Grunz H. Int J Dev Biol; 1994 Mar 01; 38(1):69-76. PubMed ID: 8074997 [Abstract] [Full Text] [Related]
15. A fate map of the vegetal plate of the sea urchin (Lytechinus variegatus) mesenchyme blastula. Ruffins SW, Ettensohn CA. Development; 1996 Jan 01; 122(1):253-63. PubMed ID: 8565837 [Abstract] [Full Text] [Related]
16. Fate map for the 32-cell stage of Xenopus laevis. Dale L, Slack JM. Development; 1987 Apr 01; 99(4):527-51. PubMed ID: 3665770 [Abstract] [Full Text] [Related]
17. Pattern regulation in defect embryos of Xenopus laevis. Kageura H, Yamana K. Dev Biol; 1984 Feb 01; 101(2):410-5. PubMed ID: 6692985 [Abstract] [Full Text] [Related]
18. A fate map for the 32-cell stage of Rana pipiens. Saint-Jeannet JP, Dawid IB. Dev Biol; 1994 Dec 01; 166(2):755-62. PubMed ID: 7813792 [Abstract] [Full Text] [Related]