These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


128 related items for PubMed ID: 22524030

  • 1. Efficiency improvement of organic solar cells by tuning hole transport layer with germanium oxide.
    Choi MK, Kim JH, Yoon H, Tahk D, Seo S, Shin K, Lee HH.
    J Nanosci Nanotechnol; 2012 Jan; 12(1):623-8. PubMed ID: 22524030
    [Abstract] [Full Text] [Related]

  • 2. Solution-processable graphene oxide as an efficient hole transport layer in polymer solar cells.
    Li SS, Tu KH, Lin CC, Chen CW, Chhowalla M.
    ACS Nano; 2010 Jun 22; 4(6):3169-74. PubMed ID: 20481512
    [Abstract] [Full Text] [Related]

  • 3. Efficiency enhancement of graphene/silicon-pillar-array solar cells by HNO3 and PEDOT-PSS.
    Feng T, Xie D, Lin Y, Zhao H, Chen Y, Tian H, Ren T, Li X, Li Z, Wang K, Wu D, Zhu H.
    Nanoscale; 2012 Mar 21; 4(6):2130-3. PubMed ID: 22337348
    [Abstract] [Full Text] [Related]

  • 4. Fullerene derivatives as electron acceptors for organic photovoltaic cells.
    Mi D, Kim JH, Kim HU, Xu F, Hwang DH.
    J Nanosci Nanotechnol; 2014 Feb 21; 14(2):1064-84. PubMed ID: 24749413
    [Abstract] [Full Text] [Related]

  • 5. A strategic buffer layer of polythiophene enhances the efficiency of bulk heterojunction solar cells.
    Wei HY, Huang JH, Ho KC, Chu CW.
    ACS Appl Mater Interfaces; 2010 May 21; 2(5):1281-5. PubMed ID: 20450193
    [Abstract] [Full Text] [Related]

  • 6. The application of highly doped single-layer graphene as the top electrodes of semitransparent organic solar cells.
    Liu Z, Li J, Sun ZH, Tai G, Lau SP, Yan F.
    ACS Nano; 2012 Jan 24; 6(1):810-8. PubMed ID: 22148872
    [Abstract] [Full Text] [Related]

  • 7. Electrical transport characterization of PEDOT:PSS/n-Si Schottky diodes and their applications in solar cells.
    Khurelbaatar Z, Hyung JH, Kim GS, Park NW, Shim KH, Lee SK.
    J Nanosci Nanotechnol; 2014 Jun 24; 14(6):4394-9. PubMed ID: 24738402
    [Abstract] [Full Text] [Related]

  • 8. Organic solar cells with graphene electrodes and vapor printed poly(3,4-ethylenedioxythiophene) as the hole transporting layers.
    Park H, Howden RM, Barr MC, Bulović V, Gleason K, Kong J.
    ACS Nano; 2012 Jul 24; 6(7):6370-7. PubMed ID: 22724887
    [Abstract] [Full Text] [Related]

  • 9. All solution processable organic photovoltaic cells using DMDCNQI as an organic N-type buffer layer.
    Yang EY, So BM, Chung CM, Oh SY.
    J Nanosci Nanotechnol; 2012 Jan 24; 12(1):760-3. PubMed ID: 22524053
    [Abstract] [Full Text] [Related]

  • 10. Improvement of external quantum efficiency depressed by visible light-absorbing hole transport material in solid-state semiconductor-sensitized heterojunction solar cells.
    Lim CS, Im SH, Chang JA, Lee YH, Kim HJ, Seok SI.
    Nanoscale; 2012 Jan 21; 4(2):429-32. PubMed ID: 22117234
    [Abstract] [Full Text] [Related]

  • 11. High efficiency thin-film crystalline Si/Ge tandem solar cell.
    Sun G, Chang F, Soref RA.
    Opt Express; 2010 Feb 15; 18(4):3746-53. PubMed ID: 20389384
    [Abstract] [Full Text] [Related]

  • 12. Treating the Poly(3,4-ethylenedioxythiophene):Poly(styrenesulfonate) Surface with Hydroquinone Enhances the Performance of Polymer Solar Cells.
    Park S, Cha MJ, Seo JH, Heo J, Chan Lim D, Cho S.
    ACS Appl Mater Interfaces; 2018 Dec 05; 10(48):41578-41585. PubMed ID: 30406653
    [Abstract] [Full Text] [Related]

  • 13. Enhanced performance and stability of polymer BHJ photovoltaic devices from dry transfer of PEDOT:PSS.
    Kim JK, Park I, Kim W, Wang DH, Choi DG, Choi YS, Park JH.
    ChemSusChem; 2014 Jul 05; 7(7):1957-63. PubMed ID: 24989323
    [Abstract] [Full Text] [Related]

  • 14. Organic photovoltaic solar cells with cathode modified by ZnO.
    Kim HP, Yusoff AR, Jang J.
    J Nanosci Nanotechnol; 2013 Jul 05; 13(7):5142-7. PubMed ID: 23901543
    [Abstract] [Full Text] [Related]

  • 15. Light concentration and redistribution in polymer solar cells by plasmonic nanoparticles.
    Zhu J, Xue M, Hoekstra R, Xiu F, Zeng B, Wang KL.
    Nanoscale; 2012 Mar 21; 4(6):1978-81. PubMed ID: 22354350
    [Abstract] [Full Text] [Related]

  • 16. Aqueous processing of low-band-gap polymer solar cells using roll-to-roll methods.
    Andersen TR, Larsen-Olsen TT, Andreasen B, Böttiger AP, Carlé JE, Helgesen M, Bundgaard E, Norrman K, Andreasen JW, Jørgensen M, Krebs FC.
    ACS Nano; 2011 May 24; 5(5):4188-96. PubMed ID: 21513333
    [Abstract] [Full Text] [Related]

  • 17. Graphene as transparent conducting electrodes in organic photovoltaics: studies in graphene morphology, hole transporting layers, and counter electrodes.
    Park H, Brown PR, Bulović V, Kong J.
    Nano Lett; 2012 Jan 11; 12(1):133-40. PubMed ID: 22107487
    [Abstract] [Full Text] [Related]

  • 18. Enhancement of organic solar cells efficiency with acetic acid modulated poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) buffer layers.
    Oh SH, Heo SJ, Kim HJ.
    J Nanosci Nanotechnol; 2014 Jul 11; 14(7):5331-4. PubMed ID: 24758027
    [Abstract] [Full Text] [Related]

  • 19. Enhanced fill factor of tandem organic solar cells incorporating a diketopyrrolopyrrole-based low-bandgap polymer and optimized interlayer.
    Wang DH, Kyaw AK, Park JH.
    ChemSusChem; 2015 Jan 11; 8(2):331-6. PubMed ID: 25404201
    [Abstract] [Full Text] [Related]

  • 20. Nanosphere templated continuous PEDOT:PSS films with low percolation threshold for application in efficient polymer solar cells.
    Kang DJ, Kang H, Kim KH, Kim BJ.
    ACS Nano; 2012 Sep 25; 6(9):7902-9. PubMed ID: 22880844
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.