These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
210 related items for PubMed ID: 22526495
1. Nitrogen availability impacts oilseed rape (Brassica napus L.) plant water status and proline production efficiency under water-limited conditions. Albert B, Le Cahérec F, Niogret MF, Faes P, Avice JC, Leport L, Bouchereau A. Planta; 2012 Aug; 236(2):659-76. PubMed ID: 22526495 [Abstract] [Full Text] [Related]
2. The expression patterns of SAG12/Cab genes reveal the spatial and temporal progression of leaf senescence in Brassica napus L. with sensitivity to the environment. Gombert J, Etienne P, Ourry A, Le Dily F. J Exp Bot; 2006 Aug; 57(9):1949-56. PubMed ID: 16720615 [Abstract] [Full Text] [Related]
3. Nitrogen storage and remobilization in Brassica napus L. during the growth cycle: effects of methyl jasmonate on nitrate uptake, senescence, growth, and VSP accumulation. Rossato L, MacDuff JH, Laine P, Le Deunff E, Ourry A. J Exp Bot; 2002 May; 53(371):1131-41. PubMed ID: 11971924 [Abstract] [Full Text] [Related]
4. Global gene expression responses to waterlogging in leaves of rape seedlings. Lee YH, Kim KS, Jang YS, Hwang JH, Lee DH, Choi IH. Plant Cell Rep; 2014 Feb; 33(2):289-99. PubMed ID: 24384821 [Abstract] [Full Text] [Related]
5. Differences between winter oilseed rape (Brassica napus L.) cultivars in nitrogen starvation-induced leaf senescence are governed by leaf-inherent rather than root-derived signals. Koeslin-Findeklee F, Becker MA, van der Graaff E, Roitsch T, Horst WJ. J Exp Bot; 2015 Jul; 66(13):3669-81. PubMed ID: 25944925 [Abstract] [Full Text] [Related]
6. A profiling approach of the natural variability of foliar N remobilization at the rosette stage gives clues to understand the limiting processes involved in the low N use efficiency of winter oilseed rape. Girondé A, Poret M, Etienne P, Trouverie J, Bouchereau A, Le Cahérec F, Leport L, Orsel M, Niogret MF, Deleu C, Avice JC. J Exp Bot; 2015 May; 66(9):2461-73. PubMed ID: 25792758 [Abstract] [Full Text] [Related]
7. Two Brassica napus genes encoding NAC transcription factors are involved in response to high-salinity stress. Zhong H, Guo QQ, Chen L, Ren F, Wang QQ, Zheng Y, Li XB. Plant Cell Rep; 2012 Nov; 31(11):1991-2003. PubMed ID: 22801866 [Abstract] [Full Text] [Related]
9. Amino acid contents and transport in oilseed rape (Brassica napus L.) under different nitrogen conditions. Tilsner J, Kassner N, Struck C, Lohaus G. Planta; 2005 Jun; 221(3):328-38. PubMed ID: 15599760 [Abstract] [Full Text] [Related]
10. Wheat bHLH-type transcription factor gene TabHLH1 is crucial in mediating osmotic stresses tolerance through modulating largely the ABA-associated pathway. Yang T, Yao S, Hao L, Zhao Y, Lu W, Xiao K. Plant Cell Rep; 2016 Nov; 35(11):2309-2323. PubMed ID: 27541276 [Abstract] [Full Text] [Related]
11. Comparative Transcriptome Analysis in Oilseed Rape (Brassica napus) Reveals Distinct Gene Expression Details between Nitrate and Ammonium Nutrition. Tang W, He X, Qian L, Wang F, Zhang Z, Sun C, Lin L, Guan C. Genes (Basel); 2019 May 22; 10(5):. PubMed ID: 31121949 [Abstract] [Full Text] [Related]
16. Poly-γ-glutamic acid induces system tolerance to drought stress by promoting abscisic acid accumulation in Brassica napus L. Xu Z, Ma J, Lei P, Wang Q, Feng X, Xu H. Sci Rep; 2020 Jan 14; 10(1):252. PubMed ID: 31937837 [Abstract] [Full Text] [Related]
17. Overexpression of the Brassica napus BnLAS gene in Arabidopsis affects plant development and increases drought tolerance. Yang M, Yang Q, Fu T, Zhou Y. Plant Cell Rep; 2011 Mar 14; 30(3):373-88. PubMed ID: 20976458 [Abstract] [Full Text] [Related]