These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


175 related items for PubMed ID: 22529029

  • 1. A comparative study on structure-property elucidation of P3/4HB and PEG-based block polyurethanes.
    Li G, Liu Y, Li D, Zhang L, Xu K.
    J Biomed Mater Res A; 2012 Sep; 100(9):2319-29. PubMed ID: 22529029
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. Alternating block polyurethanes based on PCL and PEG as potential nerve regeneration materials.
    Li G, Li D, Niu Y, He T, Chen KC, Xu K.
    J Biomed Mater Res A; 2014 Mar; 102(3):685-97. PubMed ID: 23554296
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. Block poly(ester-urethane)s based on poly(3-hydroxybutyrate-co-4-hydroxybutyrate) and poly(3-hydroxyhexanoate-co-3-hydroxyoctanoate).
    Chen Z, Cheng S, Xu K.
    Biomaterials; 2009 Apr; 30(12):2219-30. PubMed ID: 19167751
    [Abstract] [Full Text] [Related]

  • 6. Synthesis, characterizations, and biocompatibility of block poly(ester-urethane)s based on biodegradable poly(3-hydroxybutyrate-co-4-hydroxybutyrate) (P3/4HB) and poly(ε-caprolactone).
    Qiu H, Li D, Chen X, Fan K, Ou W, Chen KC, Xu K.
    J Biomed Mater Res A; 2013 Jan; 101(1):75-86. PubMed ID: 22826204
    [Abstract] [Full Text] [Related]

  • 7. Alternative block polyurethanes based on poly(3-hydroxybutyrate-co-4-hydroxybutyrate) and poly(ethylene glycol).
    Pan J, Li G, Chen Z, Chen X, Zhu W, Xu K.
    Biomaterials; 2009 Jun; 30(16):2975-84. PubMed ID: 19230967
    [Abstract] [Full Text] [Related]

  • 8. Synthesis, characterization, and biocompatibility of alternating block polyurethanes based on PLA and PEG.
    Mei T, Zhu Y, Ma T, He T, Li L, Wei C, Xu K.
    J Biomed Mater Res A; 2014 Sep; 102(9):3243-54. PubMed ID: 24133043
    [Abstract] [Full Text] [Related]

  • 9. Synthesis, characterization and biocompatibility of biodegradable elastomeric poly(ether-ester urethane)s Based on Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) and Poly(ethylene glycol) via melting polymerization.
    Li Z, Yang X, Wu L, Chen Z, Lin Y, Xu K, Chen GQ.
    J Biomater Sci Polym Ed; 2009 Sep; 20(9):1179-202. PubMed ID: 19520007
    [Abstract] [Full Text] [Related]

  • 10. Synthesis, characterization and cell compatibility of novel poly(ester urethane)s based on poly(3-hydroxybutyrate-co-4-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) prepared by melting polymerization.
    Chen Z, Cheng S, Li Z, Xu K, Chen GQ.
    J Biomater Sci Polym Ed; 2009 Sep; 20(10):1451-71. PubMed ID: 19622282
    [Abstract] [Full Text] [Related]

  • 11. Designing poly[(R)-3-hydroxybutyrate]-based polyurethane block copolymers for electrospun nanofiber scaffolds with improved mechanical properties and enhanced mineralization capability.
    Liu KL, Choo ES, Wong SY, Li X, He CB, Wang J, Li J.
    J Phys Chem B; 2010 Jun 10; 114(22):7489-98. PubMed ID: 20469884
    [Abstract] [Full Text] [Related]

  • 12. Poly(ester urethane)s consisting of poly[(R)-3-hydroxybutyrate] and poly(ethylene glycol) as candidate biomaterials: characterization and mechanical property study.
    Li X, Loh XJ, Wang K, He C, Li J.
    Biomacromolecules; 2005 Jun 10; 6(5):2740-7. PubMed ID: 16153114
    [Abstract] [Full Text] [Related]

  • 13. The in vitro hydrolysis of poly(ester urethane)s consisting of poly[(R)-3-hydroxybutyrate] and poly(ethylene glycol).
    Loh XJ, Tan KK, Li X, Li J.
    Biomaterials; 2006 Mar 10; 27(9):1841-50. PubMed ID: 16305807
    [Abstract] [Full Text] [Related]

  • 14. Synthesis, characterization, and morphology studies of biodegradable amphiphilic poly[(R)-3-hydroxybutyrate]-alt-poly(ethylene glycol) multiblock copolymers.
    Li X, Liu KL, Li J, Tan EP, Chan LM, Lim CT, Goh SH.
    Biomacromolecules; 2006 Nov 10; 7(11):3112-9. PubMed ID: 17096539
    [Abstract] [Full Text] [Related]

  • 15. Preparation and properties of biomedical segmented polyurethanes based on poly(ether ester) and uniform-size diurethane diisocyanates.
    Yin S, Xia Y, Jia Q, Hou ZS, Zhang N.
    J Biomater Sci Polym Ed; 2017 Jan 10; 28(1):119-138. PubMed ID: 27774855
    [Abstract] [Full Text] [Related]

  • 16. Biodegradable hyperbranched amphiphilic polyurethane multiblock copolymers consisting of poly(propylene glycol), poly(ethylene glycol), and polycaprolactone as in situ thermogels.
    Li Z, Zhang Z, Liu KL, Ni X, Li J.
    Biomacromolecules; 2012 Dec 10; 13(12):3977-89. PubMed ID: 23167676
    [Abstract] [Full Text] [Related]

  • 17. Scaffolds from block polyurethanes based on poly(ɛ-caprolactone) (PCL) and poly(ethylene glycol) (PEG) for peripheral nerve regeneration.
    Niu Y, Chen KC, He T, Yu W, Huang S, Xu K.
    Biomaterials; 2014 May 10; 35(14):4266-77. PubMed ID: 24582378
    [Abstract] [Full Text] [Related]

  • 18. Hydrolytic degradation and protein release studies of thermogelling polyurethane copolymers consisting of poly[(R)-3-hydroxybutyrate], poly(ethylene glycol), and poly(propylene glycol).
    Loh XJ, Goh SH, Li J.
    Biomaterials; 2007 Oct 10; 28(28):4113-23. PubMed ID: 17573109
    [Abstract] [Full Text] [Related]

  • 19. Synthesis and wound healing of alternating block polyurethanes based on poly(lactic acid) (PLA) and poly(ethylene glycol) (PEG).
    Li L, Liu X, Niu Y, Ye J, Huang S, Liu C, Xu K.
    J Biomed Mater Res B Appl Biomater; 2017 Jul 10; 105(5):1200-1209. PubMed ID: 27059634
    [Abstract] [Full Text] [Related]

  • 20. Biocompatibility of poly(epsilon-caprolactone)/poly(ethylene glycol) diblock copolymers with nanophase separation.
    Hsu SH, Tang CM, Lin CC.
    Biomaterials; 2004 Nov 10; 25(25):5593-601. PubMed ID: 15159075
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.