These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


537 related items for PubMed ID: 22534790

  • 1. Identification of FAD2 and FAD3 genes in Brassica napus genome and development of allele-specific markers for high oleic and low linolenic acid contents.
    Yang Q, Fan C, Guo Z, Qin J, Wu J, Li Q, Fu T, Zhou Y.
    Theor Appl Genet; 2012 Aug; 125(4):715-29. PubMed ID: 22534790
    [Abstract] [Full Text] [Related]

  • 2. Mapping of the loci controlling oleic and linolenic acid contents and development of fad2 and fad3 allele-specific markers in canola (Brassica napus L.).
    Hu X, Sullivan-Gilbert M, Gupta M, Thompson SA.
    Theor Appl Genet; 2006 Aug; 113(3):497-507. PubMed ID: 16767448
    [Abstract] [Full Text] [Related]

  • 3. Determination of fatty acid composition in seed oil of rapeseed (Brassica napus L.) by mutated alleles of the FAD3 desaturase genes.
    Bocianowski J, Mikołajczyk K, Bartkowiak-Broda I.
    J Appl Genet; 2012 Feb; 53(1):27-30. PubMed ID: 21912934
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. Identification of functional BrFAD2-1 gene encoding microsomal delta-12 fatty acid desaturase from Brassica rapa and development of Brassica napus containing high oleic acid contents.
    Jung JH, Kim H, Go YS, Lee SB, Hur CG, Kim HU, Suh MC.
    Plant Cell Rep; 2011 Oct; 30(10):1881-92. PubMed ID: 21647637
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. CRISPR/Cas9-mediated genome editing of the fatty acid desaturase 2 gene in Brassica napus.
    Okuzaki A, Ogawa T, Koizuka C, Kaneko K, Inaba M, Imamura J, Koizuka N.
    Plant Physiol Biochem; 2018 Oct; 131():63-69. PubMed ID: 29753601
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Microarray analysis of differentially expressed genes between Brassica napus strains with high- and low-oleic acid contents.
    Guan M, Li X, Guan C.
    Plant Cell Rep; 2012 May; 31(5):929-43. PubMed ID: 22203212
    [Abstract] [Full Text] [Related]

  • 14. Identification of SNP loci and candidate genes related to four important fatty acid composition in Brassica napus using genome wide association study.
    Zhu Q, King GJ, Liu X, Shan N, Borpatragohain P, Baten A, Wang P, Luo S, Zhou Q.
    PLoS One; 2019 May; 14(8):e0221578. PubMed ID: 31442274
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. HO-CR and HOLL-CR: new forms of winter oilseed rape (Brassica napus L.) with altered fatty acid composition and resistance to selected pathotypes of Plasmodiophora brassicae (clubroot).
    Spasibionek S, Mikołajczyk K, Matuszczak M, Kaczmarek J, Ramzi N, Jędryczka M.
    J Appl Genet; 2024 Sep; 65(3):439-452. PubMed ID: 38637489
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. The identification and mapping of candidate genes and QTL involved in the fatty acid desaturation pathway in Brassica napus.
    Smooker AM, Wells R, Morgan C, Beaudoin F, Cho K, Fraser F, Bancroft I.
    Theor Appl Genet; 2011 Apr; 122(6):1075-90. PubMed ID: 21184048
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 27.