These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


532 related items for PubMed ID: 22542239

  • 41. Influencing factors and prediction of ambient Peroxyacetyl nitrate concentration in Beijing, China.
    Zhang B, Zhao B, Zuo P, Huang Z, Zhang J.
    J Environ Sci (China); 2019 Mar; 77():189-197. PubMed ID: 30573082
    [Abstract] [Full Text] [Related]

  • 42. Application of artificial neural network (ANN) and partial least-squares regression (PLSR) to predict the changes of anthocyanins, ascorbic acid, Total phenols, flavonoids, and antioxidant activity during storage of red bayberry juice based on fractal analysis and red, green, and blue (RGB) intensity values.
    Zheng H, Jiang L, Lou H, Hu Y, Kong X, Lu H.
    J Agric Food Chem; 2011 Jan 26; 59(2):592-600. PubMed ID: 21190362
    [Abstract] [Full Text] [Related]

  • 43. Assessing the impact of PM2.5 on respiratory disease using artificial neural networks.
    Polezer G, Tadano YS, Siqueira HV, Godoi AFL, Yamamoto CI, de André PA, Pauliquevis T, Andrade MF, Oliveira A, Saldiva PHN, Taylor PE, Godoi RHM.
    Environ Pollut; 2018 Apr 26; 235():394-403. PubMed ID: 29306807
    [Abstract] [Full Text] [Related]

  • 44.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 45.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 46.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 47.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 48.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 49.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 50.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 51. Predicting acute aquatic toxicity of structurally diverse chemicals in fish using artificial intelligence approaches.
    Singh KP, Gupta S, Rai P.
    Ecotoxicol Environ Saf; 2013 Sep 26; 95():221-33. PubMed ID: 23764236
    [Abstract] [Full Text] [Related]

  • 52. Seasonal trends of PM2.5 and PM10 in ambient air and their correlation in ambient air of Lucknow city, India.
    Pandey P, Khan AH, Verma AK, Singh KA, Mathur N, Kisku GC, Barman SC.
    Bull Environ Contam Toxicol; 2012 Feb 26; 88(2):265-70. PubMed ID: 22105933
    [Abstract] [Full Text] [Related]

  • 53. Evaluation of AERMOD and CALPUFF for predicting ambient concentrations of total suspended particulate matter (TSP) emissions from a quarry in complex terrain.
    Tartakovsky D, Broday DM, Stern E.
    Environ Pollut; 2013 Aug 26; 179():138-45. PubMed ID: 23673194
    [Abstract] [Full Text] [Related]

  • 54. A proposed methodology for the assessment of arsenic, nickel, cadmium and lead levels in ambient air.
    Santos G, Fernández-Olmo I.
    Sci Total Environ; 2016 Jun 01; 554-555():155-66. PubMed ID: 26950629
    [Abstract] [Full Text] [Related]

  • 55. The role of a peri-urban forest on air quality improvement in the Mexico City megalopolis.
    Baumgardner D, Varela S, Escobedo FJ, Chacalo A, Ochoa C.
    Environ Pollut; 2012 Apr 01; 163():174-83. PubMed ID: 22245735
    [Abstract] [Full Text] [Related]

  • 56.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 57.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 58.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 59.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 60.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 27.