These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


157 related items for PubMed ID: 22543968

  • 1. Mapping of proton relaxation near superparamagnetic iron oxide particle-loaded polymer threads for magnetic susceptibility difference quantification.
    Donker HC, Krämer NA, Otto J, Klinge U, Slabu I, Baumann M, Kuhl CK.
    Invest Radiol; 2012 Jun; 47(6):359-67. PubMed ID: 22543968
    [Abstract] [Full Text] [Related]

  • 2. In vivo visualization of polymer-based mesh implants using conventional magnetic resonance imaging and positive-contrast susceptibility imaging.
    Kraemer NA, Donker HC, Kuehnert N, Otto J, Schrading S, Krombach GA, Klinge U, Kuhl CK.
    Invest Radiol; 2013 Apr; 48(4):200-5. PubMed ID: 23344516
    [Abstract] [Full Text] [Related]

  • 3. A concept for magnetic resonance visualization of surgical textile implants.
    Krämer NA, Donker HC, Otto J, Hodenius M, Sénégas J, Slabu I, Klinge U, Baumann M, Müllen A, Obolenski B, Günther RW, Krombach GA.
    Invest Radiol; 2010 Aug; 45(8):477-83. PubMed ID: 20531013
    [Abstract] [Full Text] [Related]

  • 4. First in-human magnetic resonance visualization of surgical mesh implants for inguinal hernia treatment.
    Hansen NL, Barabasch A, Distelmaier M, Ciritsis A, Kuehnert N, Otto J, Conze J, Klinge U, Hilgers RD, Kuhl CK, Kraemer NA.
    Invest Radiol; 2013 Nov; 48(11):770-8. PubMed ID: 23732864
    [Abstract] [Full Text] [Related]

  • 5. Comparative analysis of the 1H NMR relaxation enhancement produced by iron oxide and core-shell iron-iron oxide nanoparticles.
    Miguel OB, Gossuin Y, Morales MP, Gillis P, Muller RN, Veintemillas-Verdaguer S.
    Magn Reson Imaging; 2007 Dec; 25(10):1437-41. PubMed ID: 17566686
    [Abstract] [Full Text] [Related]

  • 6. [Hepatic and hepatocarcinoma magnetic resonance: comparison of the results obtained with paramagnetic (gadolinium) and superparamagnetic (iron oxide particles) contrast media].
    Castoldi MC, Fauda V, Scaramuzza D, Vergnaghi D.
    Radiol Med; 2000 Sep; 100(3):160-7. PubMed ID: 11148882
    [Abstract] [Full Text] [Related]

  • 7. NMR relaxation study of water dynamics in superparamagnetic iron-oxide-loaded vesicles.
    Chen YW, Hsieh CJ, Lin CM, Hwang DW.
    J Chem Phys; 2013 Feb 14; 138(6):064502. PubMed ID: 23425474
    [Abstract] [Full Text] [Related]

  • 8. Superparamagnetic iron oxide nanoparticle-embedded encapsulated microbubbles as dual contrast agents of magnetic resonance and ultrasound imaging.
    Yang F, Li Y, Chen Z, Zhang Y, Wu J, Gu N.
    Biomaterials; 2009 Aug 14; 30(23-24):3882-90. PubMed ID: 19395082
    [Abstract] [Full Text] [Related]

  • 9. Drug-loaded and superparamagnetic iron oxide nanoparticle surface-embedded amphiphilic block copolymer micelles for integrated chemotherapeutic drug delivery and MR imaging.
    Hu J, Qian Y, Wang X, Liu T, Liu S.
    Langmuir; 2012 Jan 31; 28(4):2073-82. PubMed ID: 22047551
    [Abstract] [Full Text] [Related]

  • 10. Multifunctional stable and pH-responsive polymer vesicles formed by heterofunctional triblock copolymer for targeted anticancer drug delivery and ultrasensitive MR imaging.
    Yang X, Grailer JJ, Rowland IJ, Javadi A, Hurley SA, Matson VZ, Steeber DA, Gong S.
    ACS Nano; 2010 Nov 23; 4(11):6805-17. PubMed ID: 20958084
    [Abstract] [Full Text] [Related]

  • 11. Relaxivity optimization of a PEGylated iron-oxide-based negative magnetic resonance contrast agent for T₂-weighted spin-echo imaging.
    Pöselt E, Kloust H, Tromsdorf U, Janschel M, Hahn C, Maßlo C, Weller H.
    ACS Nano; 2012 Feb 28; 6(2):1619-24. PubMed ID: 22276942
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Quantification of superparamagnetic iron oxide with large dynamic range using TurboSPI.
    Rioux JA, Brewer KD, Beyea SD, Bowen CV.
    J Magn Reson; 2012 Mar 28; 216():152-60. PubMed ID: 22364896
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Current limitations of molecular magnetic resonance imaging for tumors as evaluated with high-relaxivity CD105-specific iron oxide nanoparticles.
    Dassler K, Roohi F, Lohrke J, Ide A, Remmele S, Hütter J, Pietsch H, Pison U, Schütz G.
    Invest Radiol; 2012 Jul 28; 47(7):383-91. PubMed ID: 22659596
    [Abstract] [Full Text] [Related]

  • 17. MRI of monocyte infiltration in an animal model of neuroinflammation using SPIO-labeled monocytes or free USPIO.
    Oude Engberink RD, Blezer EL, Hoff EI, van der Pol SM, van der Toorn A, Dijkhuizen RM, de Vries HE.
    J Cereb Blood Flow Metab; 2008 Apr 28; 28(4):841-51. PubMed ID: 18000513
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. R2 and R2* mapping for sensing cell-bound superparamagnetic nanoparticles: in vitro and murine in vivo testing.
    Kuhlpeter R, Dahnke H, Matuszewski L, Persigehl T, von Wallbrunn A, Allkemper T, Heindel WL, Schaeffter T, Bremer C.
    Radiology; 2007 Nov 28; 245(2):449-57. PubMed ID: 17848680
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.