These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
179 related items for PubMed ID: 22544280
41. Silver nanoparticles self assembly as SERS substrates with near single molecule detection limit. Fan M, Brolo AG. Phys Chem Chem Phys; 2009 Sep 14; 11(34):7381-9. PubMed ID: 19690709 [Abstract] [Full Text] [Related]
42. SERS substrate based on the flexible hybrid of polydimethylsiloxane and silver colloid decorated with silver nanoparticles. Guo Y, Yu J, Li C, Li Z, Pan J, Liu A, Man B, Wu T, Xiu X, Zhang C. Opt Express; 2018 Aug 20; 26(17):21784-21796. PubMed ID: 30130880 [Abstract] [Full Text] [Related]
43. Engineering natural materials as surface-enhanced Raman spectroscopy substrates for in situ molecular sensing. Liu X, Zong C, Ai K, He W, Lu L. ACS Appl Mater Interfaces; 2012 Dec 20; 4(12):6599-608. PubMed ID: 23170894 [Abstract] [Full Text] [Related]
44. Multiplexed microfluidic surface-enhanced Raman spectroscopy. Abu-Hatab NA, John JF, Oran JM, Sepaniak MJ. Appl Spectrosc; 2007 Oct 20; 61(10):1116-22. PubMed ID: 17958963 [Abstract] [Full Text] [Related]
45. Influences of composition on electroless deposition of silver nanoparticles on glass substrates for surface-enhanced Raman scattering measurements. Cheng ML, Yang J. Appl Spectrosc; 2008 Dec 20; 62(12):1384-94. PubMed ID: 19094399 [Abstract] [Full Text] [Related]
47. In situ controlled growth of well-dispersed gold nanoparticles in TiO2 nanotube arrays as recyclable substrates for surface-enhanced Raman scattering. Chen Y, Tian G, Pan K, Tian C, Zhou J, Zhou W, Ren Z, Fu H. Dalton Trans; 2012 Jan 21; 41(3):1020-6. PubMed ID: 22083352 [Abstract] [Full Text] [Related]
48. Cones fabricated by 3D nanoimprint lithography for highly sensitive surface enhanced Raman spectroscopy. Wu W, Hu M, Ou FS, Li Z, Williams RS. Nanotechnology; 2010 Jun 25; 21(25):255502. PubMed ID: 20508315 [Abstract] [Full Text] [Related]
49. Self-Assembly of Strain-Adaptable Surface-Enhanced Raman Scattering Substrate on Polydimethylsiloxane Nanowrinkles. Peng R, Zhang T, Wang S, Liu Z, Pan P, Xu X, Song Y, Liu X, Yan S, Wang J. Anal Chem; 2024 Jul 02; 96(26):10620-10629. PubMed ID: 38888085 [Abstract] [Full Text] [Related]
50. Designed fabrication of ordered porous au/ag nanostructured films for surface-enhanced Raman scattering substrates. Lu L, Eychmüller A, Kobayashi A, Hirano Y, Yoshida K, Kikkawa Y, Tawa K, Ozaki Y. Langmuir; 2006 Mar 14; 22(6):2605-9. PubMed ID: 16519460 [Abstract] [Full Text] [Related]
52. Deposition method for preparing SERS-active gold nanoparticle substrates. Kho KW, Shen ZX, Zeng HC, Soo KC, Olivo M. Anal Chem; 2005 Nov 15; 77(22):7462-71. PubMed ID: 16285701 [Abstract] [Full Text] [Related]
53. Aligned silver nanorod arrays for surface-enhanced Raman scattering. Yang Y, Xiong L, Shi J, Nogami M. Nanotechnology; 2006 May 28; 17(10):2670-4. PubMed ID: 21727523 [Abstract] [Full Text] [Related]
54. Alkylamine capped metal nanoparticle "inks" for printable SERS substrates, electronics and broadband photodetectors. Polavarapu L, Manga KK, Yu K, Ang PK, Cao HD, Balapanuru J, Loh KP, Xu QH. Nanoscale; 2011 May 28; 3(5):2268-74. PubMed ID: 21491022 [Abstract] [Full Text] [Related]
59. Development of highly reproducible nanogap SERS substrates: comparative performance analysis and its application for glucose sensing. Dinish US, Yaw FC, Agarwal A, Olivo M. Biosens Bioelectron; 2011 Jan 15; 26(5):1987-92. PubMed ID: 20869866 [Abstract] [Full Text] [Related]