These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


230 related items for PubMed ID: 22546481

  • 1. Production and effect of aldonic acids during enzymatic hydrolysis of lignocellulose at high dry matter content.
    Cannella D, Hsieh CW, Felby C, Jørgensen H.
    Biotechnol Biofuels; 2012 Apr 30; 5(1):26. PubMed ID: 22546481
    [Abstract] [Full Text] [Related]

  • 2. Celluclast and Cellic® CTec2: Saccharification/fermentation of wheat straw, solid-liquid partition and potential of enzyme recycling by alkaline washing.
    Rodrigues AC, Haven MØ, Lindedam J, Felby C, Gama M.
    Enzyme Microb Technol; 2015 Nov 30; 79-80():70-7. PubMed ID: 26320717
    [Abstract] [Full Text] [Related]

  • 3. Adsorption of β-glucosidases in two commercial preparations onto pretreated biomass and lignin.
    Haven MO, Jørgensen H.
    Biotechnol Biofuels; 2013 Nov 25; 6(1):165. PubMed ID: 24274678
    [Abstract] [Full Text] [Related]

  • 4. Do new cellulolytic enzyme preparations affect the industrial strategies for high solids lignocellulosic ethanol production?
    Cannella D, Jørgensen H.
    Biotechnol Bioeng; 2014 Jan 25; 111(1):59-68. PubMed ID: 24022674
    [Abstract] [Full Text] [Related]

  • 5. Augmented hydrolysis of acid pretreated sugarcane bagasse by PEG 6000 addition: a case study of Cellic CTec2 with recycling and reuse.
    Baral P, Jain L, Kurmi AK, Kumar V, Agrawal D.
    Bioprocess Biosyst Eng; 2020 Mar 25; 43(3):473-482. PubMed ID: 31705315
    [Abstract] [Full Text] [Related]

  • 6. Enzymatic hydrolysis is limited by biomass-water interactions at high-solids: improved performance through substrate modifications.
    Weiss ND, Felby C, Thygesen LG.
    Biotechnol Biofuels; 2019 Mar 25; 12():3. PubMed ID: 30622645
    [Abstract] [Full Text] [Related]

  • 7. Investigating the role of AA9 LPMOs in enzymatic hydrolysis of differentially steam-pretreated spruce.
    Caputo F, Tõlgo M, Naidjonoka P, Krogh KBRM, Novy V, Olsson L.
    Biotechnol Biofuels Bioprod; 2023 Apr 19; 16(1):68. PubMed ID: 37076886
    [Abstract] [Full Text] [Related]

  • 8. Cellobiohydrolase B of Aspergillus niger over-expressed in Pichia pastoris stimulates hydrolysis of oil palm empty fruit bunches.
    Woon JS, Mackeen MM, Illias RM, Mahadi NM, Broughton WJ, Murad AMA, Abu Bakar FD.
    PeerJ; 2017 Apr 19; 5():e3909. PubMed ID: 29038760
    [Abstract] [Full Text] [Related]

  • 9. Additives enhancing enzymatic hydrolysis of lignocellulosic biomass.
    Rocha-Martín J, Martinez-Bernal C, Pérez-Cobas Y, Reyes-Sosa FM, García BD.
    Bioresour Technol; 2017 Nov 19; 244(Pt 1):48-56. PubMed ID: 28777990
    [Abstract] [Full Text] [Related]

  • 10. Enzymatic hydrolysis of steam-pretreated lignocellulosic materials with Trichoderma atroviride enzymes produced in-house.
    Kovacs K, Macrelli S, Szakacs G, Zacchi G.
    Biotechnol Biofuels; 2009 Jul 06; 2():14. PubMed ID: 19580644
    [Abstract] [Full Text] [Related]

  • 11. Deficiency of cellulase activity measurements for enzyme evaluation.
    Pryor SW, Nahar N.
    Appl Biochem Biotechnol; 2010 Nov 06; 162(6):1737-50. PubMed ID: 20407843
    [Abstract] [Full Text] [Related]

  • 12. Effect of cellulolytic enzyme binding on lignin isolated from alkali and acid pretreated switchgrass on enzymatic hydrolysis.
    Jung W, Sharma-Shivappa R, Park S, Kolar P.
    3 Biotech; 2020 Jan 06; 10(1):1. PubMed ID: 31815083
    [Abstract] [Full Text] [Related]

  • 13. Improving the fermentable sugar yields of wheat straw by high-temperature pre-hydrolysis with thermophilic enzymes of Malbranchea cinnamomea.
    Zhu N, Jin H, Kong X, Zhu Y, Ye X, Xi Y, Du J, Li B, Lou M, Shah GM.
    Microb Cell Fact; 2020 Jul 25; 19(1):149. PubMed ID: 32711527
    [Abstract] [Full Text] [Related]

  • 14. Characterization of hemicellulase and cellulase from the extremely thermophilic bacterium Caldicellulosiruptor owensensis and their potential application for bioconversion of lignocellulosic biomass without pretreatment.
    Peng X, Qiao W, Mi S, Jia X, Su H, Han Y.
    Biotechnol Biofuels; 2015 Jul 25; 8():131. PubMed ID: 26322125
    [Abstract] [Full Text] [Related]

  • 15. Interplays of enzyme, substrate, and surfactant on hydrolysis of native lignocellulosic biomass.
    Lee S, Akeprathumchai S, Bundidamorn D, Salaipeth L, Poomputsa K, Ratanakhanokchai K, Chang KL, Phitsuwan P.
    Bioengineered; 2021 Dec 25; 12(1):5110-5124. PubMed ID: 34369275
    [Abstract] [Full Text] [Related]

  • 16. Efficiency of new fungal cellulase systems in boosting enzymatic degradation of barley straw lignocellulose.
    Rosgaard L, Pedersen S, Cherry JR, Harris P, Meyer AS.
    Biotechnol Prog; 2006 Dec 25; 22(2):493-8. PubMed ID: 16599567
    [Abstract] [Full Text] [Related]

  • 17. Physiochemical and Thermodynamic Characterization of Highly Active Mutated Aspergillus niger β-glucosidase for Lignocellulose Hydrolysis.
    Javed MR, Rashid MH, Riaz M, Nadeem H, Qasim M, Ashiq N.
    Protein Pept Lett; 2018 Dec 25; 25(2):208-219. PubMed ID: 29384047
    [Abstract] [Full Text] [Related]

  • 18. Synergistic effect of thermostable β-glucosidase TN0602 and cellulase on cellulose hydrolysis.
    Zhang Z, Wang M, Gao R, Yu X, Chen G.
    3 Biotech; 2017 May 25; 7(1):54. PubMed ID: 28444598
    [Abstract] [Full Text] [Related]

  • 19. Immobilization of beta-glucosidase on Eupergit C for lignocellulose hydrolysis.
    Tu M, Zhang X, Kurabi A, Gilkes N, Mabee W, Saddler J.
    Biotechnol Lett; 2006 Feb 25; 28(3):151-6. PubMed ID: 16489491
    [Abstract] [Full Text] [Related]

  • 20. The enhancement of enzymatic hydrolysis of lignocellulosic substrates by the addition of accessory enzymes such as xylanase: is it an additive or synergistic effect?
    Hu J, Arantes V, Saddler JN.
    Biotechnol Biofuels; 2011 Oct 05; 4():36. PubMed ID: 21974832
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 12.