These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


193 related items for PubMed ID: 22547276

  • 1. Harmonic spatial coherence imaging: an ultrasonic imaging method based on backscatter coherence.
    Dahl J, Jakovljevic M, Pinton GF, Trahey GE.
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Apr; 59(4):648-59. PubMed ID: 22547276
    [Abstract] [Full Text] [Related]

  • 2. In vivo application of short-lag spatial coherence and harmonic spatial coherence imaging in fetal ultrasound.
    Kakkad V, Dahl J, Ellestad S, Trahey G.
    Ultrason Imaging; 2015 Apr; 37(2):101-16. PubMed ID: 25116292
    [Abstract] [Full Text] [Related]

  • 3. In vivo application of short-lag spatial coherence imaging in human liver.
    Jakovljevic M, Trahey GE, Nelson RC, Dahl JJ.
    Ultrasound Med Biol; 2013 Mar; 39(3):534-42. PubMed ID: 23347642
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. Robust Short-Lag Spatial Coherence Imaging.
    Nair AA, Tran TD, Bell MAL.
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Mar; 65(3):366-377. PubMed ID: 29505405
    [Abstract] [Full Text] [Related]

  • 6. Short-lag Spatial Coherence Ultrasound Imaging with Adaptive Synthetic Transmit Aperture Focusing.
    Zhao J, Wang Y, Yu J, Guo W, Zhang S, Aliabadi S.
    Ultrason Imaging; 2017 Jul; 39(4):224-239. PubMed ID: 28068874
    [Abstract] [Full Text] [Related]

  • 7. Lesion detectability in diagnostic ultrasound with short-lag spatial coherence imaging.
    Dahl JJ, Hyun D, Lediju M, Trahey GE.
    Ultrason Imaging; 2011 Apr; 33(2):119-33. PubMed ID: 21710827
    [Abstract] [Full Text] [Related]

  • 8. Short-lag spatial coherence of backscattered echoes: imaging characteristics.
    Lediju MA, Trahey GE, Byram BC, Dahl JJ.
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Jul; 58(7):1377-88. PubMed ID: 21768022
    [Abstract] [Full Text] [Related]

  • 9. Spatial Coherence Approaches to Distinguish Suspicious Mass Contents in Fundamental and Harmonic Breast Ultrasound Images.
    Sharma A, Oluyemi E, Myers K, Ambinder E, Bell MAL.
    IEEE Trans Ultrason Ferroelectr Freq Control; 2024 Jan; 71(1):70-84. PubMed ID: 37956000
    [Abstract] [Full Text] [Related]

  • 10. Clinical Utility of Fetal Short-Lag Spatial Coherence Imaging.
    Long W, Hyun D, Choudhury KR, Bradway D, McNally P, Boyd B, Ellestad S, Trahey GE.
    Ultrasound Med Biol; 2018 Apr; 44(4):794-806. PubMed ID: 29336851
    [Abstract] [Full Text] [Related]

  • 11. Resolution and brightness characteristics of short-lag spatial coherence (SLSC) images.
    Lediju Bell MA, Dahl JJ, Trahey GE.
    IEEE Trans Ultrason Ferroelectr Freq Control; 2015 Jul; 62(7):1265-76. PubMed ID: 26168173
    [Abstract] [Full Text] [Related]

  • 12. Adaptive Ultrasound Tissue Harmonic Imaging Based on an Improved Ensemble Empirical Mode Decomposition Algorithm.
    Han S, Zhang Y, Wu K, He B, Zhang K, Liang H.
    Ultrason Imaging; 2020 Mar; 42(2):57-73. PubMed ID: 31994455
    [Abstract] [Full Text] [Related]

  • 13. Short-lag spatial coherence imaging of cardiac ultrasound data: initial clinical results.
    Lediju Bell MA, Goswami R, Kisslo JA, Dahl JJ, Trahey GE.
    Ultrasound Med Biol; 2013 Oct; 39(10):1861-74. PubMed ID: 23932276
    [Abstract] [Full Text] [Related]

  • 14. Robust Short-Lag Spatial Coherence Imaging of Breast Ultrasound Data: Initial Clinical Results.
    Wiacek A, Rindal OMH, Falomo E, Myers K, Fabrega-Foster K, Harvey S, Lediju Bell MA.
    IEEE Trans Ultrason Ferroelectr Freq Control; 2019 Mar; 66(3):527-540. PubMed ID: 30507500
    [Abstract] [Full Text] [Related]

  • 15. Spatial coherence of backscatter for the nonlinearly produced second harmonic for specific transmit apodizations.
    Fedewa RJ, Wallace KD, Holland MR, Jago JR, Ng GC, Rielly MR, Robinson BS, Miller JG.
    IEEE Trans Ultrason Ferroelectr Freq Control; 2004 May; 51(5):576-88. PubMed ID: 15217235
    [Abstract] [Full Text] [Related]

  • 16. Spatial coherence of the nonlinearly generated second harmonic portion of backscatter for a clinical imaging system.
    Fedewa RJ, Wallace KD, Holland MR, Jago JR, Ng GC, Rielly MR, Robinson BS, Miller JG.
    IEEE Trans Ultrason Ferroelectr Freq Control; 2003 Aug; 50(8):1010-22. PubMed ID: 12952092
    [Abstract] [Full Text] [Related]

  • 17. Short-lag spatial coherence imaging using minimum variance beamforming on dual apertures.
    Qi Y, Wang Y, Yu J, Guo Y.
    Biomed Eng Online; 2019 Apr 23; 18(1):48. PubMed ID: 31014338
    [Abstract] [Full Text] [Related]

  • 18. Harmonic tracking of acoustic radiation force-induced displacements.
    Doherty JR, Dahl JJ, Trahey GE.
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Nov 23; 60(11):2347-58. PubMed ID: 24158290
    [Abstract] [Full Text] [Related]

  • 19. Incoherent Clutter Suppression Using Lag-One Coherence.
    Long W, Bottenus N, Trahey GE.
    IEEE Trans Ultrason Ferroelectr Freq Control; 2020 Aug 23; 67(8):1544-1557. PubMed ID: 32142428
    [Abstract] [Full Text] [Related]

  • 20. Spatiotemporal Coherence to Quantify Sources of Image Degradation in Ultrasonic Imaging.
    Vienneau EP, Ozgun KA, Byram BC.
    IEEE Trans Ultrason Ferroelectr Freq Control; 2022 Apr 23; 69(4):1337-1352. PubMed ID: 35175919
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.