These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


262 related items for PubMed ID: 22554195

  • 1. High efficiency graphene solar cells by chemical doping.
    Miao X, Tongay S, Petterson MK, Berke K, Rinzler AG, Appleton BR, Hebard AF.
    Nano Lett; 2012 Jun 13; 12(6):2745-50. PubMed ID: 22554195
    [Abstract] [Full Text] [Related]

  • 2. Graphene/silicon nanowire Schottky junction for enhanced light harvesting.
    Fan G, Zhu H, Wang K, Wei J, Li X, Shu Q, Guo N, Wu D.
    ACS Appl Mater Interfaces; 2011 Mar 13; 3(3):721-5. PubMed ID: 21323376
    [Abstract] [Full Text] [Related]

  • 3. Efficiency enhancement of graphene/silicon-pillar-array solar cells by HNO3 and PEDOT-PSS.
    Feng T, Xie D, Lin Y, Zhao H, Chen Y, Tian H, Ren T, Li X, Li Z, Wang K, Wu D, Zhu H.
    Nanoscale; 2012 Mar 21; 4(6):2130-3. PubMed ID: 22337348
    [Abstract] [Full Text] [Related]

  • 4. Enhanced Power Conversion Efficiency of Graphene/Silicon Heterojunction Solar Cells Through NiO Induced Doping.
    Kuru C, Yavuz S, Kargar A, Choi D, Choi C, Rustomji C, Jin S, Bandaru PR.
    J Nanosci Nanotechnol; 2016 Jan 21; 16(1):1190-3. PubMed ID: 27398585
    [Abstract] [Full Text] [Related]

  • 5. A simple and scalable graphene patterning method and its application in CdSe nanobelt/graphene Schottky junction solar cells.
    Ye Y, Gan L, Dai L, Dai Y, Guo X, Meng H, Yu B, Shi Z, Shang K, Qin G.
    Nanoscale; 2011 Apr 21; 3(4):1477-81. PubMed ID: 21359405
    [Abstract] [Full Text] [Related]

  • 6. High-performance single CdS nanowire (nanobelt) Schottky junction solar cells with Au/graphene Schottky electrodes.
    Ye Y, Dai Y, Dai L, Shi Z, Liu N, Wang F, Fu L, Peng R, Wen X, Chen Z, Liu Z, Qin G.
    ACS Appl Mater Interfaces; 2010 Dec 21; 2(12):3406-10. PubMed ID: 21058686
    [Abstract] [Full Text] [Related]

  • 7. Ion doping of graphene for high-efficiency heterojunction solar cells.
    Li X, Xie D, Park H, Zhu M, Zeng TH, Wang K, Wei J, Wu D, Kong J, Zhu H.
    Nanoscale; 2013 Mar 07; 5(5):1945-8. PubMed ID: 23358527
    [Abstract] [Full Text] [Related]

  • 8. Colloidal antireflection coating improves graphene-silicon solar cells.
    Shi E, Li H, Yang L, Zhang L, Li Z, Li P, Shang Y, Wu S, Li X, Wei J, Wang K, Zhu H, Wu D, Fang Y, Cao A.
    Nano Lett; 2013 Apr 10; 13(4):1776-81. PubMed ID: 23517083
    [Abstract] [Full Text] [Related]

  • 9. Electrical transport characterization of PEDOT:PSS/n-Si Schottky diodes and their applications in solar cells.
    Khurelbaatar Z, Hyung JH, Kim GS, Park NW, Shim KH, Lee SK.
    J Nanosci Nanotechnol; 2014 Jun 10; 14(6):4394-9. PubMed ID: 24738402
    [Abstract] [Full Text] [Related]

  • 10. The application of highly doped single-layer graphene as the top electrodes of semitransparent organic solar cells.
    Liu Z, Li J, Sun ZH, Tai G, Lau SP, Yan F.
    ACS Nano; 2012 Jan 24; 6(1):810-8. PubMed ID: 22148872
    [Abstract] [Full Text] [Related]

  • 11. High efficiency thin-film crystalline Si/Ge tandem solar cell.
    Sun G, Chang F, Soref RA.
    Opt Express; 2010 Feb 15; 18(4):3746-53. PubMed ID: 20389384
    [Abstract] [Full Text] [Related]

  • 12. Layer-by-layer graphene/TCNQ stacked films as conducting anodes for organic solar cells.
    Hsu CL, Lin CT, Huang JH, Chu CW, Wei KH, Li LJ.
    ACS Nano; 2012 Jun 26; 6(6):5031-9. PubMed ID: 22632158
    [Abstract] [Full Text] [Related]

  • 13. Influence of black silicon surfaces on the performance of back-contacted back silicon heterojunction solar cells.
    Ziegler J, Haschke J, Käsebier T, Korte L, Sprafke AN, Wehrspohn RB.
    Opt Express; 2014 Oct 20; 22 Suppl 6():A1469-76. PubMed ID: 25607304
    [Abstract] [Full Text] [Related]

  • 14. Flexible photovoltaic cells based on a graphene-CdSe quantum dot nanocomposite.
    Chen J, Xu F, Wu J, Qasim K, Zhou Y, Lei W, Sun LT, Zhang Y.
    Nanoscale; 2012 Jan 21; 4(2):441-3. PubMed ID: 22159842
    [Abstract] [Full Text] [Related]

  • 15. Photovoltaic nanocrystal scintillators hybridized on Si solar cells for enhanced conversion efficiency in UV.
    Mutlugun E, Soganci IM, Demir HV.
    Opt Express; 2008 Mar 17; 16(6):3537-45. PubMed ID: 18542446
    [Abstract] [Full Text] [Related]

  • 16. Development and Analysis of Graphene-Sheet-Based GaAs Schottky Solar Cell for Enriched Efficiency.
    Phimu LK, Dhar RS, Singh KJ, Banerjee A.
    Micromachines (Basel); 2023 Jun 10; 14(6):. PubMed ID: 37374811
    [Abstract] [Full Text] [Related]

  • 17. Graphene-Perovskite Solar Cells Exceed 18 % Efficiency: A Stability Study.
    Agresti A, Pescetelli S, Taheri B, Del Rio Castillo AE, Cinà L, Bonaccorso F, Di Carlo A.
    ChemSusChem; 2016 Sep 22; 9(18):2609-2619. PubMed ID: 27629238
    [Abstract] [Full Text] [Related]

  • 18. Depleted-heterojunction colloidal quantum dot solar cells.
    Pattantyus-Abraham AG, Kramer IJ, Barkhouse AR, Wang X, Konstantatos G, Debnath R, Levina L, Raabe I, Nazeeruddin MK, Grätzel M, Sargent EH.
    ACS Nano; 2010 Jun 22; 4(6):3374-80. PubMed ID: 20496882
    [Abstract] [Full Text] [Related]

  • 19. Hybrid silicon nanocone-polymer solar cells.
    Jeong S, Garnett EC, Wang S, Yu Z, Fan S, Brongersma ML, McGehee MD, Cui Y.
    Nano Lett; 2012 Jun 13; 12(6):2971-6. PubMed ID: 22545674
    [Abstract] [Full Text] [Related]

  • 20. Hybrid solar cells from P3HT and silicon nanocrystals.
    Liu CY, Holman ZC, Kortshagen UR.
    Nano Lett; 2009 Jan 13; 9(1):449-52. PubMed ID: 19113966
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 14.