These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


262 related items for PubMed ID: 22554195

  • 21. High-efficiency ferroelectric-film solar cells with an n-type Cu₂O cathode buffer layer.
    Cao D, Wang C, Zheng F, Dong W, Fang L, Shen M.
    Nano Lett; 2012 Jun 13; 12(6):2803-9. PubMed ID: 22582756
    [Abstract] [Full Text] [Related]

  • 22. The enhanced efficiency of graphene-silicon solar cells by electric field doping.
    Yu X, Yang L, Lv Q, Xu M, Chen H, Yang D.
    Nanoscale; 2015 Apr 28; 7(16):7072-7. PubMed ID: 25588162
    [Abstract] [Full Text] [Related]

  • 23. Graphene nanoribbons as low band gap donor materials for organic photovoltaics: quantum chemical aided design.
    Osella S, Narita A, Schwab MG, Hernandez Y, Feng X, Müllen K, Beljonne D.
    ACS Nano; 2012 Jun 26; 6(6):5539-48. PubMed ID: 22631451
    [Abstract] [Full Text] [Related]

  • 24. 10.2% power conversion efficiency polymer tandem solar cells consisting of two identical sub-cells.
    You J, Chen CC, Hong Z, Yoshimura K, Ohya K, Xu R, Ye S, Gao J, Li G, Yang Y.
    Adv Mater; 2013 Aug 07; 25(29):3973-8. PubMed ID: 23716123
    [Abstract] [Full Text] [Related]

  • 25. Role of majority and minority carrier barriers silicon/organic hybrid heterojunction solar cells.
    Avasthi S, Lee S, Loo YL, Sturm JC.
    Adv Mater; 2011 Dec 22; 23(48):5762-6. PubMed ID: 22109841
    [Abstract] [Full Text] [Related]

  • 26. High-efficiency photonic crystal solar cell architecture.
    Chutinan A, Kherani NP, Zukotynski S.
    Opt Express; 2009 May 25; 17(11):8871-8. PubMed ID: 19466136
    [Abstract] [Full Text] [Related]

  • 27. Semiconducting monolayer materials as a tunable platform for excitonic solar cells.
    Bernardi M, Palummo M, Grossman JC.
    ACS Nano; 2012 Nov 27; 6(11):10082-9. PubMed ID: 23062107
    [Abstract] [Full Text] [Related]

  • 28. Nanostructure control of graphene-composited TiO2 by a one-step solvothermal approach for high performance dye-sensitized solar cells.
    He Z, Guai G, Liu J, Guo C, Loo JS, Li CM, Tan TT.
    Nanoscale; 2011 Nov 27; 3(11):4613-6. PubMed ID: 22006266
    [Abstract] [Full Text] [Related]

  • 29. Toward interaction of sensitizer and functional moieties in hole-transporting materials for efficient semiconductor-sensitized solar cells.
    Im SH, Lim CS, Chang JA, Lee YH, Maiti N, Kim HJ, Nazeeruddin MK, Grätzel M, Seok SI.
    Nano Lett; 2011 Nov 09; 11(11):4789-93. PubMed ID: 21961842
    [Abstract] [Full Text] [Related]

  • 30. Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells.
    Wang Y, Sun T, Paudel T, Zhang Y, Ren Z, Kempa K.
    Nano Lett; 2012 Jan 11; 12(1):440-5. PubMed ID: 22185407
    [Abstract] [Full Text] [Related]

  • 31. The transitional heterojunction behavior of PbS/ZnO colloidal quantum dot solar cells.
    Willis SM, Cheng C, Assender HE, Watt AA.
    Nano Lett; 2012 Mar 14; 12(3):1522-6. PubMed ID: 22300421
    [Abstract] [Full Text] [Related]

  • 32. A chemical route to graphene for device applications.
    Gilje S, Han S, Wang M, Wang KL, Kaner RB.
    Nano Lett; 2007 Nov 14; 7(11):3394-8. PubMed ID: 17944523
    [Abstract] [Full Text] [Related]

  • 33. Enhanced performance of InGaN/GaN based solar cells with an In(0.05)Ga(0.95)N ultra-thin inserting layer between GaN barrier and In(0.2)Ga(0.8)N well.
    Ren Z, Chao L, Chen X, Zhao B, Wang X, Tong J, Zhang J, Zhuo X, Li D, Yi H, Li S.
    Opt Express; 2013 Mar 25; 21(6):7118-24. PubMed ID: 23546093
    [Abstract] [Full Text] [Related]

  • 34. Strong enhancement of solar cell efficiency due to quantum dots with built-in charge.
    Sablon KA, Little JW, Mitin V, Sergeev A, Vagidov N, Reinhardt K.
    Nano Lett; 2011 Jun 08; 11(6):2311-7. PubMed ID: 21545165
    [Abstract] [Full Text] [Related]

  • 35. Antimony Doping in Solution-processed Cu2 ZnSn(S,Se)4 Solar Cells.
    Tai KF, Fu D, Chiam SY, Huan CH, Batabyal SK, Wong LH.
    ChemSusChem; 2015 Oct 26; 8(20):3504-11. PubMed ID: 26376602
    [Abstract] [Full Text] [Related]

  • 36. Surface modification via wet chemical etching of single-crystalline silicon for photovoltaic application.
    Reshak AH, Shahimin MM, Shaari S, Johan N.
    Prog Biophys Mol Biol; 2013 Nov 26; 113(2):327-32. PubMed ID: 24139943
    [Abstract] [Full Text] [Related]

  • 37. Electrolyte-induced inversion layer Schottky junction solar cells.
    Wadhwa P, Seol G, Petterson MK, Guo J, Rinzler AG.
    Nano Lett; 2011 Jun 08; 11(6):2419-23. PubMed ID: 21598913
    [Abstract] [Full Text] [Related]

  • 38. Bi2S3microspheres grown on graphene sheets as low-cost counter-electrode materials for dye-sensitized solar cells.
    Li G, Chen X, Gao G.
    Nanoscale; 2014 Mar 21; 6(6):3283-8. PubMed ID: 24509629
    [Abstract] [Full Text] [Related]

  • 39. Plasmonic effects in amorphous silicon thin film solar cells with metal back contacts.
    Palanchoke U, Jovanov V, Kurz H, Obermeyer P, Stiebig H, Knipp D.
    Opt Express; 2012 Mar 12; 20(6):6340-7. PubMed ID: 22418515
    [Abstract] [Full Text] [Related]

  • 40. Improvement of external quantum efficiency depressed by visible light-absorbing hole transport material in solid-state semiconductor-sensitized heterojunction solar cells.
    Lim CS, Im SH, Chang JA, Lee YH, Kim HJ, Seok SI.
    Nanoscale; 2012 Jan 21; 4(2):429-32. PubMed ID: 22117234
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 14.