These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
262 related items for PubMed ID: 22554195
61. Wet chemical synthesis and self-assembly of SnS2 nanoparticles on TiO2 for quantum dot-sensitized solar cells. Tsukigase H, Suzuki Y, Berger MH, Sagawa T, Yoshikawa S. J Nanosci Nanotechnol; 2011 Apr; 11(4):3215-21. PubMed ID: 21776689 [Abstract] [Full Text] [Related]
62. High-performance silicon nanowire array photoelectrochemical solar cells through surface passivation and modification. Wang X, Peng KQ, Pan XJ, Chen X, Yang Y, Li L, Meng XM, Zhang WJ, Lee ST. Angew Chem Int Ed Engl; 2011 Oct 10; 50(42):9861-5. PubMed ID: 21905189 [Abstract] [Full Text] [Related]
63. Hybrid heterojunction and photoelectrochemistry solar cell based on silicon nanowires and double-walled carbon nanotubes. Shu Q, Wei J, Wang K, Zhu H, Li Z, Jia Y, Gui X, Guo N, Li X, Ma C, Wu D. Nano Lett; 2009 Dec 10; 9(12):4338-42. PubMed ID: 19852483 [Abstract] [Full Text] [Related]
64. Minimizing Trap Charge Density towards an Ideal Diode in Graphene-Silicon Schottky Solar Cell. Adhikari S, Biswas C, Doan MH, Kim ST, Kulshreshtha C, Lee YH. ACS Appl Mater Interfaces; 2019 Jan 09; 11(1):880-888. PubMed ID: 30560653 [Abstract] [Full Text] [Related]
65. Plasmonic-enhanced organic photovoltaics: breaking the 10% efficiency barrier. Gan Q, Bartoli FJ, Kafafi ZH. Adv Mater; 2013 May 07; 25(17):2385-96. PubMed ID: 23417974 [Abstract] [Full Text] [Related]
66. Tuning the Fermi-level of TiO2 mesoporous layer by lanthanum doping towards efficient perovskite solar cells. Gao XX, Ge QQ, Xue DJ, Ding J, Ma JY, Chen YX, Zhang B, Feng Y, Wan LJ, Hu JS. Nanoscale; 2016 Sep 29; 8(38):16881-16885. PubMed ID: 27714098 [Abstract] [Full Text] [Related]
67. Sub-micrometer-sized graphite as a conducting and catalytic counter electrode for dye-sensitized solar cells. Veerappan G, Bojan K, Rhee SW. ACS Appl Mater Interfaces; 2011 Mar 29; 3(3):857-62. PubMed ID: 21351744 [Abstract] [Full Text] [Related]
68. High-Efficiency Crystalline Silicon-Based Solar Cells Using Textured TiO2 Layer and Plasmonic Nanoparticles. Elrashidi A, Elleithy K. Nanomaterials (Basel); 2022 May 07; 12(9):. PubMed ID: 35564297 [Abstract] [Full Text] [Related]
69. Tuning light absorption in core/shell silicon nanowire photovoltaic devices through morphological design. Kim SK, Day RW, Cahoon JF, Kempa TJ, Song KD, Park HG, Lieber CM. Nano Lett; 2012 Sep 12; 12(9):4971-6. PubMed ID: 22889329 [Abstract] [Full Text] [Related]
70. Efficient light trapping in inverted nanopyramid thin crystalline silicon membranes for solar cell applications. Mavrokefalos A, Han SE, Yerci S, Branham MS, Chen G. Nano Lett; 2012 Jun 13; 12(6):2792-6. PubMed ID: 22612694 [Abstract] [Full Text] [Related]
71. Solution-processed fullerene-based organic Schottky junction devices for large-open-circuit-voltage organic solar cells. Yang B, Guo F, Yuan Y, Xiao Z, Lu Y, Dong Q, Huang J. Adv Mater; 2013 Jan 25; 25(4):572-7. PubMed ID: 23125058 [Abstract] [Full Text] [Related]
72. Strong Fermi-Level Pinning at Metal/n-Si(001) Interface Ensured by Forming an Intact Schottky Contact with a Graphene Insertion Layer. Yoon HH, Jung S, Choi G, Kim J, Jeon Y, Kim YS, Jeong HY, Kim K, Kwon SY, Park K. Nano Lett; 2017 Jan 11; 17(1):44-49. PubMed ID: 27960259 [Abstract] [Full Text] [Related]
73. In situ nanomechanical measurements of interfacial strength in membrane-embedded chemically functionalized Si microwires for flexible solar cells. Cho CJ, O'Leary L, Lewis NS, Greer JR. Nano Lett; 2012 Jun 13; 12(6):3296-301. PubMed ID: 22612659 [Abstract] [Full Text] [Related]
74. Electrospun carbon nanofibers as low-cost counter electrode for dye-sensitized solar cells. Joshi P, Zhang L, Chen Q, Galipeau D, Fong H, Qiao Q. ACS Appl Mater Interfaces; 2010 Dec 13; 2(12):3572-7. PubMed ID: 21073177 [Abstract] [Full Text] [Related]
75. Performance enhancement of hybrid solar cells through chemical vapor annealing. Wu Y, Zhang G. Nano Lett; 2010 May 12; 10(5):1628-31. PubMed ID: 20377200 [Abstract] [Full Text] [Related]
76. Large, solution-processable graphene quantum dots as light absorbers for photovoltaics. Yan X, Cui X, Li B, Li LS. Nano Lett; 2010 May 12; 10(5):1869-73. PubMed ID: 20377198 [Abstract] [Full Text] [Related]
77. Light trapping in silicon nanowire solar cells. Garnett E, Yang P. Nano Lett; 2010 Mar 10; 10(3):1082-7. PubMed ID: 20108969 [Abstract] [Full Text] [Related]
78. High-quality graphene p-n junctions via resist-free fabrication and solution-based noncovalent functionalization. Cheng HC, Shiue RJ, Tsai CC, Wang WH, Chen YT. ACS Nano; 2011 Mar 22; 5(3):2051-9. PubMed ID: 21322639 [Abstract] [Full Text] [Related]
79. Sandwich-Doping for a Large Schottky Barrier and Long-Term Stability in Graphene/Silicon Schottky Junction Solar Cells. Im MJ, Hyeong SK, Park M, Lee SK, Kim TW, Jung GY, Bae S. ACS Omega; 2021 Feb 09; 6(5):3973-3979. PubMed ID: 33585774 [Abstract] [Full Text] [Related]
80. Flexible asymmetric supercapacitors with high energy and high power density in aqueous electrolytes. Cheng Y, Zhang H, Lu S, Varanasi CV, Liu J. Nanoscale; 2013 Feb 07; 5(3):1067-73. PubMed ID: 23254316 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]